FSU Presenting a Technical Paper

Edwin F. Hilinski

NSF-REU Site: Sunshine Institute for the Interaction of Light with Matter
Department of Chemistry and Biochemistry
Florida State University, Tallahassee, FL 32306-4390

E-mail: efhilinski@fsu.edu http://www.chem.fsu.edu/hilinski

Adapted from Dale Carnegie Training, 1996 Dale Carnegie & Associates

Acknowledgment - We thank the National Science Foundation Research Experiences for Undergraduates (NSF-REU) Sites program. This material is based upon work supported by the National Science Foundation under Grant No. CHE-2150301.

Overview

- 1. Tell them what you're going to tell them.
- 2. Tell them.
- 3. Tell them what you've told them.

General Tips

- 1. Do not read your presentation!!
- 2. Know your audience.
- 3. Keep eye contact with the audience.
- 4. Make sure that your visuals are readable.
- 5. Try not to jiggle the pointer, jingle coins, click retractable pens, do not remove then replace then remove then replace... the cap of a dry erase marker, etc.
- 6. The shorter the talk, the more practice you need.

Organize Your Presentation

- 1. What is the problem?
- 2. What do you hypothesize?
- 3. How did you test your hypothesis (experiment)?
- 4. What did you observe?
- 5. What did you conclude?
- 6. Cite all references to the literature.

 If you are not sure, cite a reference; do not plagiarize.

IMRADC

ntroduction

Methods

Results

And

Discussion

Conclusions

Slide 1

Title Title

REU Student Name, In-Lab Mentor 1, In-Lab Mentor 2, and Professor Name*

NSF-REU Site: Sunshine Institute for the Interaction of Light with Matter

Department of Chemistry and Biochemistry, Florida State University

Tallahassee, Florida, 32306-4390

Image(s)

Acknowledgment(s) - We thank the National Science Foundation Research Experiences for Undergraduates (NSF-REU) Sites program. This material is based upon work supported by the National Science Foundation under Grant No. CHE-2150301. [Add additional acknowledgments as needed/desired.]

Introduction

- 1. The subject—problem and hypothesis
- 2. Background and justification
- 3. Objectives of the study

Methods

- 1. Materials, equipment, and the location of the experiment
- 2. Methods of sampling
- 3. Methods of analysis
- 4. Statistical evaluations

Results and Discussion

- 1. Synopsis of results
- 2. Presentation of data
 - a. Figures
 - b. Tables
 - c. Graphs
- 3. Discussion of significance

Conclusions

- 1. Summarize your results
- 2. Put them in context why they are important
- 3. Optional future work to be done and why

Types of Illustrations

- 1. Tables
- 2. Graphs line, bar, pie, 3D
- 3. Photos

Make It Simple

- 1. Tables should be clear
 - a. Put like items in columns
 - b. Round off numbers; significant figures; align decimals

2. Figures

- a. Limit the number of curves or bars on graph
- b. x is the independent variable; y is dependent
- c. Avoid wasted space, but do not overcrowd
- d. Label axes carefully

Use of Color in Slides

- 1. Background subdued or neutral colors
- 2. Highlighting points bright or contrasting colors
- 3. Check colors on projection screen
- 4. Coordinate colors for presentation
- 5. Implement the KISS principle

Posters

- 1. Brief and clearly organized
- 2. Simple with an obvious central point a. Short text / paragraphs (<20 lines)
- 3. Easy to read from 1 to 2 meters away
- 4. Attractive and aesthetically pleasing
 - a. Mix visual imagery with text
 - b. Use color appropriately

```
[More details about posters will be given in separate documents: PosterPresentations_Arial_240607a.pptx; PosterPresentations_Arial_240607a.pdf; Poster_Template_240607a.pptx.]
```