QUANTUM NUMBERS WORKSHEET

- 1. State the four quantum numbers, then explain the possible values they may have and what they actually represent.
- n Pricipal Quantum Number: represents the energy level the electron is in, linked to the periods of the periodic. Can be 1 to 7
- **l** Secondary Quantum Number/Orbital Shape Quantum number: represents the shape of the orbital- s, p, f, d. l is a range of n-1.
- m_l Magnetic quantum number: represents the number of orbits possible. M_l is a range of l.
- m_s Spin Quantum number: represents the electron and its spin. Two possibilities +1/2, -1/2
- 2. State the number of possible electrons described by the following quantum numbers

```
a. n = 3, 1 = 0 2
b. n = 3, 1 = 1 6
c. n = 3, 1 = 2, ml = -1 2
d. n = 5, 1 = 0, ml -2, ms -1/2 Not possible
```

3. Give the n and l values for the following orbitals

```
a. 1s n=1 l = 0
b. 3s n=3 l =0
c. 2p n= 2 l= 1
d. 4d n= 4 l=2
e. 5f n= 5 l= 3
```

4. What is the m_1 values for the following types of orbitals?

```
a. s m_l = 0
b. p m_l = -1, 0,1
c. d m_l = -2, -1, 0, 1, 2
d. f m_l = -3, -2, -1, 0, 1, 2, 3
```

6. How many possible orbitals are there for n =

```
a. 4 s-1, p-3, d-5, f-7= 16 orbitals
b. 6 9 orbitals
```

7. Write the complete set of quantum numbers that represent the <u>valence electrons</u> for the following elements:

8. Write the electron configurations for the elements above.

9. Without referring to a text, periodic table or handout, deduce the maximum number of electrons that can occupy an:

```
a. s orbital _2__ b. the subshell of p orbitals __6__ c. the subshell of d orbitals _10__
```

10. How many electrons can inhabit all of the n=4 orbitals?

$$4s = 2$$

$$4p = 6$$

$$4d = 10$$

$$4f = 14$$

$$32 \text{ Total Electrons}$$

- 11. Fill in the blanks with the correct response:
 - a. The number of orbitals with the quantum numbers n=3, l=2 and $m_l=0$ is ____1__.
 - b. The subshell with the quantum numbers n=4, l=2 is ___d__.
 - c. The m_1 values for a d orbital are ____-2, -1, 0, 1, 2____.
 - d. The allowed values of l for the shell with n=2 are 0. 1
 - e. The allowed values of l for the shell with n=4 are ____0, 1, 2, 3
 - f. The number of orbitals in a shell with n=3 is 1+3+5=9 (s, p, d).
 - g. The number of orbitals with n=3 and l=1 is $_{2}$.
 - h. The maximum number of electrons with quantum numbers with n=3 and l=2 is __10__.
 - i. When n=2, l can be 0, 1.
 - j. When n=2, the possible values for m_1 are $_{-1}$, 0, 1.
 - k. The number of electrons with n=4, l=1 is $_{6}$.
 - 1. The subshell with n=3 and l=1 is designated as the __p or -1, 0, 1___ subshell.
 - m. The lowest value of n for which a d subshell can occur is n = 3.
- 12. Write the values for the quantum numbers for the **bold** electron in the following diagrams:
 - a. 3p orbitals

- a. n=3, l=1, $m_l=1$, $m_s=+1/2$
- c. n=4, l=2, $m_1 = -2$, $m_s = -1/2$

b. 5s

d. 3d orbitals

- b. n=5, l=0, $m_l=0$, $m_s=-1/2$
- d. n=3, l=2, $m_l = 0$, $m_s = +1/2$
- 13. How many electrons can occupy any single subshell orbital? 2
- 14. a. What is the value of *l* for a 4 f electron? 3
 - b. What is the orbital designation for an electron in the 3rd shell and p sublevel? **3p**
 - c. What are the possible values of ml for a 5d electron? 2, 1, 0, -1, -2
 - d. What is the maximum number of electrons in the 3rd energy level? 18
 - e. How many orbitals have the following quantum numbers: n = 4, l = 2, ml = -2? 1
 - f. How many electrons have the following quantum numbers: n = 4, l = 2, ml = -2? 2