Faculty
Faculty
The Alabugin research group focuses on the discovery of new chemical reactions, synthesis of unusual molecules, and stereoelectronic connections between structure and reactivity.
Our research focuses on determining the structures and interactions of macromolecules by ion mobility / mass spectrometry.
The DePrince group develops theories and algorithms for high-accuracy quantum chemical simulations.
The Frederich research group focuses on the chemistry and biology of architecturally complex natural products.
The Hakansson group applies state-of-the-art mass spectrometry (MS), particularly Fourier transform ion cyclotron resonance (FT-ICR) MS
The Hanson research group focuses on the design, synthesis and characterization of light absorbing and emitting molecules for various applications.
Many important phenomena that interact to determine the outcome of a chemical reaction occur in the time regime from 10-13 to 10-6 seconds.
The Hu research group focuses on the design, synthesis, and characterization of functional energy materials and advancement of solid-state NMR/MRI techniques.
Natural products, a class of small molecules renowned for their structural complexity and biological potency, have long been at the forefront of drug discovery ...
The Kennemur research team focuses on the synthesis, characterization, and properties of functional polymers towards precise, biomimetic, stimuli-responsive, nanostructured, and/or sustainable materials.
The Kudisch group investigates the photophysical and photochemical underpinnings of next-generation photocatalysts for use in novel and disruptive photochemical transformations.
The Latturner group explores metal flux synthesis of inorganic semiconductors and intermetallics of interest for their magnetic and electronic properties.
The Lazenby laboratory focuses on electroanalytical techniques and scanned probe electrochemical microscopy, for analytical applications in imaging, chemical sensing, health and materials characterization.
Microbes are often referred to as "the greatest chemists" because they possess a diverse array of metabolic pathways ...
The principle that guides my research is that biological macromolecules are chemicals and biological processes are chemical processes; we should be able to understand them...
Our research focuses the development of new functional materials for applications in a wide range of technological areas from energy to environmental and information technologies.
We focus on understanding, controlling and tailoring the interfaces between inorganic nanomaterials and various systems, including biological materials, metal complexes and fluorescent compounds.
The Miller research group investigates the origin, evolution and regulation of biological catalysts.
The Ouyang research group develops and applies data-driven approaches to design and understand materials for energy storage and conversion.
The Roper laboratory develops new analytical methods and techniques to investigate biological signaling.
Photochemistry of organic molecules; elucidation of the mechanisms of selected photochemical reactions with emphasis on biochemically significant molecules.
The Sang research team investigates biomarkers and biochemical mechanisms of stem cell differentiation and tissue engineering, cancer metabolism, angiogenesis, progression, invasion, and metastasis.
We specialize in understanding the weird and wonderful behavior of charged polymers, polyelectrolytes, at surfaces, as thin films and in the bulk.
Solid-state NMR of the periodic table, diffraction methods, and quantum chemical computations to study numerous materials, like pharmaceuticals, nanoparticles, porous solids, and catalysts.
We study relationships between crystal and electronic structures and properties of materials, in order to design and synthesize better magnets, catalysts, and stimuli-responsive molecular materials.
The Silvers lab focusses on understanding how proteins and RNA interact on a molecular level using NMR spectroscopy and how this interaction mediates function and disease-related dysfunction.
Research in the Smith Lab is committed to the synthesis of complex molecules and reaction invention.
We explore chemical self-organization at the mesoscale, materials synthesis far from the thermodynamic equilibrium, hierarchically ordered matter, and prebiotic chemistry.
The Strouse group focuses on the molecular engineering and design of a wide range of stimuli responsive nanoscale materials.
Our research interest is in the development and application of state-of-art multi-spectrum atomistic simulation techniques to understand the hidden nature of complex biological phenomena.
The Zeng research team applies robotics and AI-driven experimentation to the development of inorganic materials and chemical processes for energy and environmental applications.
The Zhu group is interested in solving fundamental problems in chemistry and developing new technologies using the tools in supramolecular chemistry.
Research in Wen Zhu's laboratory focuses on translating the fundamental understanding of enzyme catalysis into the knowledge needed for innovative drug discovery.