Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Crystallization of amorphous Na₂Si₂O₅ as a Na-ion conductor

Youngseok Jee^a, Po-Hsiu Chien^b, Esteban Villarreal^c, Yan-Yan Hu^b, Kevin Huang^{a,*}

^a Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29201, USA

^b Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA

^c Department of Chemistry, University of South Carolina, Columbia, SC 29201, USA

ARTICLE INFO

Article history: Received 28 May 2016 Received in revised form 2 July 2016 Accepted 5 September 2016 Available online 11 September 2016

Keywords:

Electrochemical cell Na⁺ conductor Conductivity Amorphous Crystallization

ABSTRACT

The Na₂Si₂O₅ in the amorphous state exhibits a fast Na⁺-conduction at elevated temperatures. However, it is metastable, gradually transforming into the insulating Na₂Si₂O₅ in the crystalline state with temperatures. The present work shows that the presence of H₂ and Al-doping can suppress the harmful amorphous-to-crystalline transformation in Na₂Si₂O₅. A systematic investigation was carried out to understand the fundamental aspects of the amorphous-to-crystalline transformation through a suite of advanced experimental techniques including X-ray diffraction (XRD), differential scanning calorimetry (DSC) analysis, electrochemical impedance spectroscopy (EIS), Raman spectroscopy and multi-nucleus nuclear magnetic resonance spectroscopy (NMR).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Solid-state fast-ion conductors are a class of highly pursued materials for energy-efficient and environmentally clean electrochemical energy conversion and storage devices such as batteries, fuel cells and gas separation membranes. The mobile ions in solid crystalline fast-ion conductors developed in the past include F⁻ in PbF₂ [1–3], Ag⁺ in AgI [4–6], Na⁺ in β'' -Al₂O₃ [7–8], Li⁺ in Li₅La₃M₂O₁₂ (M = Nb, Ta) [9–10] and O²⁻ in Y-doped ZrO₂ [11], just to name a few.

Recently, the amorphous $Na_2Si_2O_5$ exhibiting an ionic conductivity of 0.01 S/cm² at 500 °C has also been identified as a Na⁺-conductor. [12,13] A further study of this material revealed that the amorphous $Na_2Si_2O_5$ phase was unstable at elevated temperatures, transforming into a poorly conducting crystalline phase of the same composition and leading to a fast degradation of conductivity [14,15]. How to retain the conducting amorphous phase and thus a high ionic conductivity becomes a key for this material to be practically meaningful.

In the present study, we investigate the factors affecting the crystallization process of the amorphous Na₂Si₂O₅ such as atmosphere and doping. Conventional techniques such as electrochemical impedance spectroscopy (EIS), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Raman Spectroscopy and Nuclear Magnetic Resonance (NMR) Spectroscopy were particularly employed to characterize electrical, chemical and thermal properties of the undoped and Aldoped amorphous Na₂Si₂O₅ exposed to a broad range of atmospheres.

* Corresponding author. *E-mail address:* huang46@cec.sc.edu (K. Huang).

2. Experimental procedures

2.1. Sample preparation

Na₂CO₃ (99.9%; Fisher Scientific Inc., Hampton, NH), and SiO₂ (99.9%; Alfa Aesar, Ward Hill, MA) were used as the raw materials to prepare the amorphous Na₂Si₂O₅. The powders with the molar ratio of 1:2 were mixed for 20 min in a high-energy mechanical mixer (8000 M Mixer/Mill®; SPEX®; SamplePrep LLC, Metuchen, NJ) in the presence of alcohol and ZrO₂ milling balls. The well-mixed powders were then dried and then pelletized under 5 MPa, followed by calcination at 800 °C for 10 h. Thus pre-calcined pellets were then broken into fine particles of 1–2 μ m with a high-energy vibrational mill (Micronizing Mill; The McCrone Group Inc., Westmont, IL). The samples were finally sintered at 900 °C for 10 h in an alumina crucible with a slow heating rate of 2 °C/min, followed by quenching to room temperature. Since the melting temperature of the material is 848.8 °C, [15] lower than 900 °C, the samples were fully melted and transparent.

To study the effect of dopant on the crystallization process, only 5 mol% alumina added Na₂Si₂O₅ was prepared from raw Na₂CO₃, SiO₂ and alpha phase alumina (α -Al₂O₃, >99%; Sigma-Aldrich, St. Louis, MO) with the atomic ratio of 100:95:5 (Na:Si:Al). Except the raw materials, the preparation steps for the doped sample were identical to the undoped sample. For the sake of convenience, we labeled the two samples as AM-Na₂Si₂O₅ for the amorphous Na₂Si₂O₅ and AL-Na₂Si₂O₅ for the alumina-doped one.

To study the atmosphere effect, the prepared AM-Na₂Si₂O₅ and AL-Na₂Si₂O₅ were treated at 500 °C for 100 h in pure H₂ or in air. The

SOLID STATE IONIC

Fig. 1. XRD patterns of as-prepared and $H_2/air-treated$ (at 500 $^\circ C$ for 100 h) AM-Na_2Si_2O_5 and AL-Na_2Si_2O_5.

samples prepared were subject to characterizations of XRD, Raman spectroscopy and NMR.

2.2. X-ray diffraction

The phase compositions of the samples prepared were examined at room temperature with a powder X-ray diffractometer (D/Max-2100; Rigaku Corporation, Tokyo, Japan) and CuKa radiation (k = 1.5418 Å). The scan was performed in the range of $2\theta = 10-80^{\circ}$ at a rate of 1° per min and in a step size of 0.04°. The spectra collected were carefully analyzed with JADE (Materials Data Inc., Livermore, CA) to identify phase compositions.

2.3. Electrical conductivity measurement

The electrical conductivity of all the samples was evaluated by electrochemical impedance spectroscopy (EIS). A typical EIS symmetrical cell consisted of a 2-mm thick pellet with a pair of identical screen printed electrode/current collector made of silver paste (C8829; Heraeus Holding GmbH, Hanau, Germany) and mesh (40935, Alfa Aesar). The EIS spectra were collected with an electrochemical station (1260/1287; Solartron Analytical, Farnborough, UK) in the air as well as in H₂ gas flowed at 50 sccm in the temperature range of 200–700 °C. At each temperature, a 10- min stabilization time was given before measurement. The frequency was swept in the range of 0.5 Hz–1 MHz with an AC stimulus voltage of 50 mV. For conductivity *vs* atmosphere study, the spectra were collected as a function of time at 500 °C. The gases investigated include 100% O₂, air, 1% O₂–N₂, 0.1% O₂–N₂, 5% H₂–N₂, 100% H₂, 12% AH humidified H₂ and 31% AH humidified H₂. The humidity was controlled by a water bubbler.

2.4. Thermal analysis

To understand the crystallization process, differential scanning calorimetry (DSC) was carried out with a thermal analyzer (STA 449F1; Netzsch Group, Selb, Germany) in the temperature range of RT–900 °C at a heating/cooling rate of 5 °C/min in a flowing air and 4% H₂-N₂ at 20 mL/min.

2.5. Raman spectroscopy

SERS (Surface-enhanced Raman spectroscopy) spectra were collected from a nomadic confocal Raman Microscope (Bayspec Inc., San Jose, CA) built on a BX51 reflected optical system (Olympus, Tokyo, Japan) with a 785 nm continuous wave excitation laser. Excitation laser was focused on sample with a $10 \times$ objective (Numerical Aperture (NA) = 0.30, working distance (WD) = 11.0 mm, Olympus MPLFLN). Laser power was measured to be 10 mW at samples and integration time was 10 s.

2.6. Solid-state NMR characterization

A rotor-synchronized spin-echo pulse sequence was employed for all the experiments with corresponding pulse lengths and recycle delays detailed in the following for each type of nucleus.

The ¹H NMR spectra were recorded at the Larmor frequency of 300 MHz with a Bruker DRX-300 spectrometer (Bruker Corporation, Billerica, MA) using a Bruker 4-mm MAS (magic angle spinning) probe spinning at 10 kHz. The $\pi/2$ pulse length is 5.65 μ s and the recycle delay is 1 s. The ¹H NMR shifts were referenced to TMS at 0 ppm for all samples. Due to a strong interference from the background signals, all ¹H spectra were subtracted from the background spectrum collected by following the same procedure as mentioned above with an empty rotor spinning at 10 kHz.

The ²⁹Si NMR spectra were collected at the Larmor frequency of 59.6 MHz with a Bruker DRX-300 spectrometer using a Bruker 4-mm MAS probe spinning at 10 kHz. The $\pi/2$ pulse length is 4.5 μ s and the recycle delay is 2 s. The ²⁹Si NMR shifts were referenced to 4,4-dimethyl-4-silapentane-1-sulfonic acid at 0 ppm.

Fig. 2. Conductivity evolution of (a) AM-Na₂Si₂O₅ and (b) AL-Na₂Si₂O₅ under different atmospheres at 500 °C.

The ^{27}Al NMR spectra were recorded at the Larmor frequency of 78.2 MHz with a Bruker DRX-300 spectrometer using a Bruker 4-mm MAS probe spinning at 10 kHz. The $\pi/2$ pulse length is 1.5 μ s and the recycle delay is 0.1 s. The ^{27}Al NMR shifts were referenced to 1 M Al(NO₃)₃ solution at 0 ppm.

All the ²³Na and ¹⁷O NMR spectra were acquired on a Bruker DRX-830 spectrometer to achieve high resolution and high sensitivity. All ²³Na NMR spectra were recorded at the Larmor frequency of 219.6 MHz with a home-built 1.8-mm MAS probe spinning at 20 kHz. The $\pi/2$ pulse length is 3 μ s and the recycle delay is 2 s. The ²³Na shifts were referenced to 1 M NaCl solution at 0 ppm. All ¹⁷O NMR spectra were recorded at the Larmor frequency of 112.6 MHz with a homebuilt low-E and high-sensitivity 3.2-mm MAS probe [16] spinning at 15 kHz. The $\pi/2$ pulse length is 1.08 μ s and the recycle delay is 0.1 s. All the ¹⁷O shifts were referenced to H₂O at 0 ppm.

Simulations and spectral analysis of all the NMR spectra were carried out using the Topspin (v3.2) software.

3. Results and discussion

3.1. XRD patterns

Fig. 1 shows XRD patterns of as-prepared Na₂Si₂O₅ (doped and undoped) as well as those treated in air and H₂ for 100 h. It is evident that the as-prepared original sample (black) indicates an amorphous phase. After exposing to H₂ at 500 °C for 100 h, the undoped sample (blue curve) begins to show very small crystalline peaks but still with a majority of amorphous composition similar to the as-prepared one. In contrast, the air-treated sample (red) shows a significant amount of crystalline phase, which is consistent with our early reports [14,15]. The comparison between samples annealed in H₂ and air suggests that reducing atmosphere can alleviate the crystallization process.

Different from the undoped AM-Na₂Si₂O₅ samples, the Al-doped AL-Na₂Si₂O₅ show a consistent amorphous phase composition regardless of heat-treatment conditions (see purple, green and orange curves in Fig. 1), which suggests that the presence of Al in the AM-Na₂Si₂O₅ can effectively suppress the crystallization process. Because of the suppressed crystallization, we expect that the conductivity degradation of these Al-doped samples will be less than the undoped ones. The same is true for the conductivity in reducing atmospheres.

3.2. Conductivity vs atmosphere

The electrical conductivity of $AM-Na_2Si_2O_5$ and $AL-Na_2Si_2O_5$ under different atmospheres is shown in Fig. 2 on a continuous time scale. After the temperature stabilization in the air for 30 min, $AM-Na_2Si_2O_5$

Fig. 3. The conductivity vs H_2O concentration of AL-Na₂Si₂O₅ at 500 °C.

Fig. 4. Conductivity Arrhenius plot of AM-Na₂Si₂O₅ fabricated under different conditions.

measurement was started in pure H₂ where conductivity is high and grows with time. After switching to 5%H₂-N₂ at 3 h marker, the level of conductivity is reduced, but still with a rising trend. However, as soon as an O₂-containing atmosphere was introduced during 4 to 26 h, the degradation of conductivity is observed. The degradation rate seems independent of the partial pressure of oxygen (0.1% O₂ to 21% O₂) during this period. Over the 22 h period, the conductivity is decreased by ~3×. Interestingly, at >26 h when H₂-containing atmosphere was re-introduced, the conductivity is increased again with the magnitude increasing with the H₂-content in the atmosphere. The final conductivity in pure H₂ is ~2× the value in oxidizing atmospheres, but only one half the original one.

Fig. 2(b) shows the conductivity of the Al-doped AL-Na₂Si₂O₅. The measurement was started in pure O_2 for this sample. The trend that conductivity degradation in oxidizing atmospheres during the first 4 h remains. Upon switching to H₂-containing gases, the conductivity sharply increases and holds a higher value with a slight decline for the

Fig. 5. Conductivity comparison between AM-Na₂Si₂O₅ and AL-Na₂Si₂O₅ in air and H₂.

Fig. 6. Comparison of DSC profiles for (a) AM-Na₂Si₂O₅ in air vs 4% H₂-N₂ and (b) AL-Na₂Si₂O₅ vs AM-Na₂Si₂O₅ in 4% H₂-N₂.

next 350 h. Overall, the level of conductivity of AL-Na $_2$ Si $_2$ O $_5$ is generally higher than AM-Na $_2$ Si $_2$ O $_5$ for a given atmosphere.

The conductivity results shown in Fig. 2 are consistent with the phase evolution revealed by the XRD results in Fig. 1. In the oxidizing atmospheres, the rising concentration of less conducting crystalline phase results in conductivity degradation to lower values, whereas in the reducing atmospheres, the suppressed crystalline phase helps retain the high conductivity present in the AM-Na₂Si₂O₅. The electronic conduction is not the reason for the enhanced conductivity observed in H₂. Later characterization also supports this assertion.

For the AL-Na₂Si₂O₅, the generally higher conductivity value is the result of less crystalline-phase in the sample, even though 5 mol% Al may still not be sufficient to completely protect the preferred amorphous phase from being crystallized. The lack of crystalline peaks in Fig. 1 for AL-Na₂Si₂O₅ samples after being exposed to all atmospheres could be misleading if the amount of crystalline phase in the sample is well below the detection limit of XRD.

3.3. Conductivity vs humidity

To understand if the observed conductivty jump in H_2 -containing atmospheres is also associated with protons produced from the oxygen

lattice via the Grotthuss mechanism, we measured conductivity of AL-Na₂Si₂O₅ in both dry and wet H₂. The results are shown in Fig. 3, where the conductivity in dry H₂ increases at the beginning, just like the AM-Na₂Si₂O₅ case shown in Fig. 2(a). After a 12% H₂O was introduced to dry H₂, the conductivity showed a slight decrease and but quickly stabilized at 0.031 S/cm. A further increase in H₂O concentration to 31% did not change the conductivity. Re-exposing dry H₂ did not have any effect on the conductivity either for the next 19 h. Therefore, it can be concluded the conductivity of AL-Na2Si2O5 is independent of the humidity. Considering the fact that one of the representative proton conducting ceramics (Y-doped BaZrO₃ or BZY) shows the apparent conductivity difference in dry/wet H₂ atmospheres [17], Grotthuss-type proton conduction is not the cause for the conductivity change observed in H₂. Furthermore, the fact that the proton conducting BZY exhibits different activation energies in air and H₂ [18], whereas both AM-Na₂Si₂O₅ and AL-Na₂Si₂O₅ show the same activation energy (see Fig. 5), also supports non-proton conduction in AM/AL-Na₂Si₂O₅.

3.4. Conductivity vs temperature

Recalling the reason for conductivity degradation, we could infer that H_2 inhibits the crystallization or slows it down at least. The

Fig. 7. Raman spectroscopy results on AM/AL-Na₂Si₂O₅ treated in various environments.

Fig. 8. (a) 23 Na, (b) 29 Si and (c) 17 O MAS NMR spectra of AM-Na₂Si₂O₅ as sintered (black), treated in H₂ (blue) and air (red).

conductivity "bend-over" temperature for the "slowly cooled" AM-Na₂Si₂O₅ is ~500 °C, and it is increase to ~550 °C for the "quenched" sample, which contains more amorphous phase. The blue data points in Fig. 4 represent the collections from the quenched sample in H₂. This "H₂-quenched" AM-Na₂Si₂O₅ shows the highest conductivity "bend-over" temperature at ~600 °C among the three samples. The higher amorphous phase content in the "H₂-quenched" AM-Na₂Si₂O₅ sample provides a higher resistance to crystallization, thus yielding a higher "bend-over" temperature. Above the "bend-over" temperature, the conductivity at 700 °C of all the samples falls closely to that of a fully crystallized Na₂Si₂O₅ (denoted as C-Na₂Si₂O₅ in Fig. 4) fabricated at 840 °C, suggesting that nearly all of the AM-Na₂Si₂O₅ has been transformed into C-Na₂Si₂O₅ at 700 °C.

For the AL-Na₂Si₂O₅ samples, Fig. 5 shows that the conductivities in the air and H₂ at 300–500 °C are almost identical to that of AM-Na₂Si₂O₅ with an activation energy of ~0.66 eV before the "bend-over", implying that the Na-ion conduction mechanism remains unchanged. It is also noted that the "bend-over" temperature of AL-Na₂Si₂O₅ are higher than AM-Na₂Si₂O₅ measured under a similar condition, *e.g.* 600 °C vs 500 °C in the air, 650 °C vs 600 °C in H₂. The suppressed conductivity

"bend-over" implies that AL-Na₂Si₂O₅ has a higher resistance to the crystallization process, which is consistent with XRD patterns in Fig. 1, as well as time-dependent conductivity in Fig. 2. In addition, the unchanged conductivity in reducing and oxidizing atmospheres is a strong indicative of ionic conduction.

3.5. DSC analysis

To understand further the crystallization of AM-Na₂Si₂O₅, DSC analysis was performed, the results of which are shown in Fig. 6. The crystallization for the AM-Na₂Si₂O₅ in air starts at 468 °C and peak at 628 °C, which is clearly lower than those in 4%H₂-N₂ atmosphere (starting at 481 °C and peaking at 642 °C). In addition, the DSC results shown in Fig. 6 (b) indicate a suppressed amorphous-to-crystalline transition for the AL-Na₂Si₂O₅ samples. In 4%H₂-N₂, the exothermic crystallization starts at 548 °C, ~67 °C higher than AM-Na₂Si₂O₅. The peak temperature is also ~70 °C higher (712 °C) with a lower heat flow, signaling a slower crystallization rate. This is consistent with the XRD and conductivity data shown above. It is, therefore, clear that AL-Na₂Si₂O₅ has a better resistance to amorphous-to-crystalline transition, promising it to be a

Fig. 9. (a) ²⁷Al MAS NMR spectra of AL-Na₂Si₂O₅ treated as sintered (purple), treated in H₂ (green), and air (orange). The simulated spectra are plotted at the bottom in dashed pink line (sum), dotted red line (Al in bridging position), and dotted blue line (Al in pairing position), respectively; (b) schematic presentation of possible locations of Al dopant in the aluminosilicate structure.

Fig. 10. (a) ²³Na, (b) ²⁹Si, and (c) ¹⁷O MAS NMR spectra of AL-Na₂Si₂O₅ treated as sintered (purple), treated in H₂ (green), and air (orange).

better candidate as an electrolyte for electrochemical cells than the intrinsic AM-Na₂Si₂O₅.

3.6. Raman spectroscopy

To understand why and how Al-addition helps suppress the amorphous-to-crystalline transition, Raman spectra were collected at RT; the results are shown in Fig. 7. Crystallographically, Na₂Si₂O₅ is consisted of sheets of six-membered rings of SiO₄ tetrahedra and Naion is suited between the layers formed by corner-shared Si₂O₅ dimer sheets [19-23]. Fig. 7 shows that all of the six samples investigated exhibit similar features of tetrahedral structure with very similar peak positions. The bands close to 573 cm⁻¹ can be assigned to bending vibrations of $Si^{4+}-O_{br}-Si^{4+}$ linkages [24]. For the samples with the crystalline phase (e.g. H₂-and air-treated AM-Na₂Si₂O₅), the sharper peak near 1090 cm⁻¹ is related to ⁻O-*Si*-O⁰ symmetric stretching [25]. The band near 370 cm⁻¹ is due to Na⁺ and O²⁻ bonding. However, no structural difference can be discerned for AM-Na₂Si₂O₅ and AL-Na₂Si₂O₅ samples. Neither are for samples treated in H₂ and air (at 500 °C for 100 h). Therefore, Raman spectroscopy is not a capable technique to identify the root cause of suppressed amorphous-to-crystallization transition.

3.7. Multinuclear (29 Si, 27 Al, 23 Na, 17 O and 1 H) NMR analyses of AM/AL-Na₂Si₂O₅

To have a better understanding of the crystallization process in AM/ AL- $Na_2Si_2O_5$, we performed a high-resolution multinuclear solid-state MAS NMR. Each element in AM/AL- $Na_2Si_2O_5$ was probed with its isotope in NMR to gauge the local environment associated with the element of interest.

3.7.1. The local structural environments of AM-Na_2Si_2O_5 treated in different atmospheres

The ²³Na, ²⁹Si and ¹⁷O NMR spectra were acquired to investigate AM-Na₂Si₂O₅ treated in different atmospheres. Fig. 8 (a) shows a single broad resonance centered at – 5 ppm (the shift is a sum of chemical and quadrupolar shifts) in the ²³Na NMR spectrum of AM-Na₂Si₂O₅, which is from the amorphous β -Na₂Si₂O₅ phase based on our prior studies [26]. A new resonance in the ²³Na spectrum is observed at ~8 ppm when amorphous β -Na₂Si₂O₅ is heated in air. The well-defined and relatively narrow line shape suggests a crystalline phase, which is identified as α -Na₂Si₂O₅ (27]. The appearance of this new resonance indicates a minor phase transformation from amorphous β -Na₂Si₂O₅ to crystalline α -Na₂Si₂O₅. A significant fraction of the amorphous β -Na₂Si₂O₅ phase is converted to crystalline α -Na₂Si₂O₅ when it is heated in the air. Consistent observations have been made from ²⁹Si and ¹⁷O NMR (Fig. 8(b) and (c)). In ²⁹Si NMR, the sharp resonance of crystalline α -Na₂Si₂O₅ appears

Fig. 11. ¹H MAS NMR spectra of $AM/AL-Na_2Si_2O_5$ treated as sintered (black/purple), treated in H₂ (blue/green), and air (red/orange).

at -95 ppm [16], and the broad resonance of amorphous β -Na₂Si₂O₅ centers at -88 ppm. Only a small amount of crystalline α -Na₂Si₂O₅ is observed in the sample heated in H₂, but a significant increase in the fraction of crystalline α -Na₂Si₂O₅ is seen in the sample heated in air. In the ¹⁷O NMR (Fig. 8(c)), the resonance of crystalline α -Na₂Si₂O₅ shows up as a shoulder to the right of the amorphous β -Na₂Si₂O₅ peak [28,29].

In summary, ²³Na, ²⁹Si, and ¹⁷O NMR spectra of the as-sintered AM-Na₂Si₂O₅ and those heated in air and H₂ consistently show that with heat treatment, the presence of O₂ greatly facilitates the conversion of amorphous β -Na₂Si₂O₅ to crystalline α -Na₂Si₂O₅. The formation of the less conductive crystalline α -Na₂Si₂O₅ phase inevitably lowers the ionic conductivity of the material as shown in Figs. 2–5.

3.7.2. The local structural environments of doped-Al

The better stability in both the ionic conductivity (Figs. 2 and 5) and crystallinity (Figs. 1, 6 and 7) at higher temperature is observed for Al-doped AM-Na₂Si₂O₅ (AL-Na₂Si₂O₅). In order to investigate where the Al dopant ends up in the structure and what leads to the stability, ²⁷Al NMR in addition to ²³Na, ²⁹Si, and ¹⁷O NMR was acquired and the spectra are presented in Figs. 9 and 10.

The ²⁷Al NMR spectrum of AL-Na₂Si₂O₅ in Fig. 9 (a) shows two Al structural environments. Based on the extensive investigation of aluminosilicate reported in the literature [30], Al replaces Si in two different positions, *i.e.* bridging and pairing (Fig. 9(b)), therefore the two ²⁷Al NMR resonances correspond to these two structural sites, with the one at 58 ppm from the paring-Al and the one centering at 38 ppm from bridging-Al. Therefore, the doped Al integrates into the structure to form sodium aluminosilicate (SAS), which is a glassy phase and does not readily crystalize upon heat treatment. The ²⁷Al NMR of AL- $Na_2Si_2O_5$ heated in H₂ or air shows little or no change (Fig. 9(a)). ²³Na and ²⁹Si NMR spectra in Fig. 10(a) and (b) confirm that the AL-Na₂Si₂O₅ phase stays glassy with heat treatment in H₂ or air. The shoulder on the right of the main AL-Na₂Si₂O₅ ¹⁷O resonances in the assintered AL-Na₂Si₂O₅ sample is likely from a minor segregated phase NaAlO₂ [31]; further heat treatment in H₂ or air promotes the full integration of NaAlO₂ into forming the glassy SAS phase.

In summary, Al integrates into the structure to form the glassy SAS phase, which does not crystalize easily upon heat treatment in either $\rm H_2$ or air.

3.7.3. Residual H species in AM/AL-Na₂Si₂O₅

The ¹H MAS NMR was also acquired to reveal the H species in AM/ AL-Na₂Si₂O₅ and their changes with heat treatment in H₂ and air. As

Fig. 12. The crystallinity change in AM-Na₂Si₂O₅ and AL-Na₂Si₂O₅ samples with atmosphere switch (H₂/air for 100 h \rightarrow air/H₂ for 500 h at 500 °C).

shown in Fig. 11, the two ¹H resonances are from structural acidic H⁺ (13 ppm) and H₂O (5 ppm), respectively. Both species are not expected to be stable at elevated temperatures either in H₂ or in air. Therefore, protons are not a mobile species in AM/AL-Na₂Si₂O₅, which is consistent with the results shown in Fig. 3.

3.8. Phase reversibility

After 100-h treatment at 500 °C in air, one group of AM-Na₂Si₂O₅ and AL-Na₂Si₂O₅ samples was re-exposed to 100% H₂ for 500 h. Another group was first heat-treated in 100% H₂ for 100 h, then 500 h in air. Fig. 12 of XRD shows that all the samples exhibit crystalline peaks. The AM-Na₂Si₂O₅ sample with H₂ \rightarrow air or air \rightarrow H₂ sequence is found to contain a higher content of the crystalline phase than the AL-Na₂Si₂O₅. The results suggest that the crystallized phase cannot be fully reversed to the amorphous phase by pure H₂, implying the crystallization is irreversible. While the AL-Na₂Si₂O₅ have a better resistance to crystallization, after 500 h heat treatment at 500 °C, a minor degree of crystallization still occurred regardless of atmospheres. In general, an oxidizing environment accelerates the crystallization more than a reducing one.

3.9. A mechanism for H₂-suppressed crystallization

The present study certainly confirms that the presence of H_2 can suppress the crystallization, thus stabilize the conductivity. How H_2 suppresses the crystallization is an interesting scientific question. In the early alloy-based H_2 -storage materials research, it was found that RE(rare-earth)-Ni metal alloys tend to be in amorphous state in H_2 , resulting in capacity degradation [32,33]. The behavior was explained by a structural perspective that H inserts into slabs and borders of the layered alloy structure and causes anisotropic volume expansion that leads to amorphization [33]. Since Na₂Si₂O₅ also has a layered structure [22], it is then reasonable to postulate that H may play a similar role by intercalating into the layers, which inhibits the transition from amorphous to crystalline phase. These hydrogen atoms are not expected to alter the tetrahedral structure of the building units of Na₂Si₂O₅. Instead, they may act only as an inhibitor preventing the crystallization.

4. Conclusions

In summary, we observed that the amorphous phase of Na₂Si₂O₅ is structurally and electrically more stable in reducing atmospheres than in oxidizing ones. More distinct and stronger XRD peaks appeared only for the air-annealed sample in comparison to the H₂-treated and as-prepared ones. From EIS and DSC measurements, we confirm that H₂ can enable a higher crystallization temperature where the conductivity "bend-over" starts. Doping 5 mol% Al into Na₂Si₂O₅ also benefits the retention of the amorphous phase, thus the stability of conductivity. The amorphous phase of AL-Na₂Si₂O₅ did not change in either H₂ or in air at 500 °C, and the DSC analysis indicated a higher crystallization temperature than the AM-Na₂Si₂O₅. Raman spectroscopy only showed the features of tetrahedral structure for both AM/AL-Na₂Si₂O₅, but cannot discern the structural differences in reducing and oxidizing atmospheres. The multi-nucleus NMR revealed rich information in local environment of cations and anions in AM-Na₂Si₂O₅, in particular, the absence of protons in the material and Al-doping on Si-site forming sodium aluminosilicate.

Acknowledgment

This work is funded by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award number DE-AR0000492 and the National Science Foundation under Award number 1508404. We would also like to thank Libin Lei for assisting the DSC measurements.

References

- [1] C.E. Derrington, M. O'Keeffe, Nature Phys. Sci. 246 (1973) 44-46.
- G.A. Samara, J. Phys. Chem. Solids 40 (1979) 509-522. [2]
- ÌЗİ J. Oberschmidt, D. Lazarus, Phys. Rev. B 21 (1980) 2952-2961.
- i4i
- G. Tubandt, E.Z. Lorenz, Phys. Rev. D 21 (1950) 252–2501.
 C. Tubandt, E.Z. Lorenz, Phys. Chem. 24 (1914) 513–543.
 K. Funke, Prog. Solid State Chem. 11 (1976) 345–402.
 M. Tatsumisago, Y. Shinkuma, T. Minami, Nature 354 (1991) 217–218.
 A.V. Virkar, G.R. Miller, R.S. Gordon, J. Am. Ceram. Soc. 61 (1978) 250–252. izi
- G.E. Youngblood, G.R. Miller, R.S. Gordon, J.Am. Ceram. Soc. 61 (1978) 86–87. [8]

- [8] G.E. Youngblood, G.R. Miller, R.S. Gordon, J.Am. Ceram. Soc. 61 (1978) 86–87.
 [9] V. Thangadurai, H. Kaack, W.J.F. Weppner, J. Am. Ceram. Soc. 86 (2003) 437–440.
 [10] V. Thangadurai, S. Adams, W.J.F. Weppner, Chem. Mater. 16 (2004) 2998–3006.
 [11] J.-H. Park, J. Electrochem. Soc. 136 (1989) 2867–2876.
 [12] X. Lei, Y. Jee, K. Huang, J. Mater, Chem. A 3 (2015) 19920–19927.
 [13] J.R. Peet, C.M. Widdifield, D.C. Apperley, P. Hodgkinson, M.R. Johnson, I.R. Evans, Chem. Commun. 51 (2015) 17163–17165.
 [14] Y. Jee, X. Zhao, K. Huang, Chem. Commun. 51 (2015) 9640–9642.
- Y. Jee, X. Zhao, X. Lei, K. Huang, J. Am. Ceram. Soc. 99 (2015) 324–331.
- [16] M.G. Mortuza, R. Dupree, D. Holland, J. Mater. Sci. 33 (1998) 3737-3740.
- R. Pornprasertsuk, O. Kosasang, K. Somroop, M. Horprathum, P. Limnonthakul, P. Chindaudom, S. Jinawath, Solid State Sci. 13 (2011) 1429–1437.
 K.-Y. Park, T.-H. Lee, J.-T. Kim, N. Lee, Y. Seo, S.-J. Song, J.-Y. Park, J. Alloys, Compd. 585 (2014) 103–110.

- [19] M.E. Fleet, G.S. Henderson, Phys. Chem. Miner. 24 (1997) 345-355.
- [20] X. Ai, F. Deng, J. Dong, L. Chen, C. Ye, J. Phys. Chem. B 106 (2002) 9237–9244.
- [21] A.K. Pant, Acta Cryst B24 (1968) 1077–1083.
- [22] V. Kahlenberg, G. Dorsam, M. Wendschuh-Josties, R.X. Fischer, J. Solid State, Chemistry 146 (1999) 380-386.
- [23]
- M.E. Fleet, J. Solid State, Chemistry 119 (1995) 400–404. P.F. McMillan, G.H. Wolf, in: J.F. Stebbins, P.F. McMillan, D.B. Dingwell (Eds.), Reviews in Mineralogy Vol. 32: Structure, Dynamics and Properties of Silicate Melts, 241 Mineralogical Society of America, Chantilly 1995, pp. 247-316.
- B.O. Mysen, D. Virgo, I. Kushiro, Am. Mineral. 66 (1981) 678-701. [25]
- i26i P.-H. Chien, Y. Jee, C. Huang, R. Dervişoğlu, I. Hung, Z. Gan, K. Huang, Y.-Y. Hu, Chem. Sci. (2016), http://dx.doi.org/10.1039/C5SC04270D.
- [27] X. Xue, J.F. Stebbins, Phys. Chem. Miner. 20 (1993) 297–307.
 [28] H. Maekawa, P. Florian, D. Massiot, H. Kiyono, M. Nakamura, J. Phys. Chem. 100 (1996) 5525–5532.
- X. Xue, J.F. Stebbins, M. Kanzaki, Am. Mineral. 79 (1994) 31-42.
- [30] X. Pardal, F. Brunet, T. Charpentier, I. Pochard, A. Nonat, Inorg. Chem. 51 (2012) 1827-1836.
- J.F. Stebbins, S.K. Lee, J.V. Oglesby, Am. Mineral. 84 (1999) 983-986. [31]
- [32] U.I. Chung, J.Y. Lee, J. Non-Cryst. Solids 110 (1989) 203–210.
 [33] Y. Li, H. Ren, Y. Zhang, Z. Liu, H. Zhang, Int. J. Hydrogen Energ. 40 (2015) 7093–7102.