This quiz is take-home and open book, and it is intended that all members of the group contribute to completing it. It is a violation of the Academic Honor Code to sign a quiz that you did not work on. The guiz is due at the end of class on Thursday, September 21.

List names in alphabetical order, and give social security numbers! Put names on all pages, and staple pages together

Points

Calculate the wavelength of the radio waves used to broadcast the AM station at 1210 (3) 1. KHz.

$$I = \frac{c}{n} = \frac{3.00 \times 10^8 \frac{\text{m}}{\text{s}}}{1210 \text{ KHz} \times 10^3 \frac{\text{Hz}}{\text{Kz}}} = 247.93 \text{ m (round to 248 or 247.9)}$$

1 pt. setup, 1 pt. correct KHz conversion, 1 pt. final calculation, 0.5 pts if unit missing.

(don't deduct for sig fig here. One could use c to a greater # of sig figs.)

Calculate the energy of a quantum of red light with a wavelength of 700 nm. (Planck's (3) 2. constant, $h = 6.63 \times 10^{-34} \text{ Js.}$

E = h
$$\mathbf{n}$$
 = $\frac{\text{hc}}{\mathbf{I}}$ = $\frac{(6.63 \times 10^{-34} \text{ Js})(3.00 \times 10^8 \text{ ms}^{-1})}{700 \text{ nm} \times 10^{-9} \frac{\text{m}}{\text{nm}}}$ = 2.84 x 10⁻¹⁹ J

1 pt. setup, 1 pt correct nm conversion, 1 pt final calculation, 0.5 pts if unit missing.

Give the electronic configuration for the following elements. (Use the abbreviation style (3) 3. shown in the example).

Example: B $1s^2 2s^2 2p$

Ne
$$1s^22s^22p^6$$
 Cl $1s^22s^22p^63s^23p^5$

$$K \qquad 1s^2 2s^2 2p^6 3s^2 3p^6 4s \qquad \qquad F \qquad 1s^2 2s^2 2p^5$$

List names in alphabetical order. Be sure to staple pages together!

(6)	4	Give the maximum	number (of electrons	that can	he found	l in·
	т.		ı nunnızı	01 0100110113	uiai Can	DC IOUIO	A III.

(a) The third **shell** (n = 3)

 $18 (2n^2)$

(b) The 2s orbital

2

(c) The **subshell** of 3p orbitals.

6

(d) The fifth **shell** (n = 5)

 $50 (2n^2)$

(e) The **subshell** of 4d orbitals

10

(f) One 4p orbital.

2