This quiz is take-home and open book, and it is intended that all members of the group contribute to completing it. It is a violation of the Academic Honor Code to sign a quiz that you did not work on. The quiz is due at the end of class on Thursday, November 2.

List names in alphabetical order, and print them clearly! Put names on all pages, and staple pages together

Points

- 1. **Sucrose** is table sugar. It has the formula $C_{12}H_{22}O_{11}$.
- (1.5) (a) How many grams of sucrose would be required to make 0.250 moles? molecular weight of sucrose = $12 \times 12.0 + 22 \times 1.0 + 11 \times 16.0 = 342.0$ g/mol $\frac{342.0 \text{ g}}{1 \text{ mol}} \times 0.250 = 85.5$ g
- (1.5) (b) How many **moles** of carbon atoms are there in 4.0 moles of sucrose?
 - 4.0 moles sucrose x $\frac{12 \text{ moles carbon}}{1 \text{ mole sucrose}} = 48 \text{ moles carbon}$
- (1.5) (c) How many carbon atoms are there in 4.0 moles of sucrose?

48 moles carbon (from part b) x
$$\frac{6.02 \times 10^{23} \text{ atoms}}{\text{mol}} = 2.89 \times 10^{25} \text{ atoms (or 2.9)}$$

(1.5) (d) If you dissolved 1.2 grams of sucrose in your coffee, how many moles of sucrose would that be?

1.2 grams sucrose x
$$\frac{1 \text{ mole}}{342.0 \text{ g}} = 3.5 \text{ x } 10^{-3} \text{ moles}$$

(2) Write and balance the equation for the complete combustion of sucrose.

$$C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12 CO_2 + 11 H_2O$$

(1.5) 2. What is the density of CO_2 gas measured at STP?

molecular weight of
$$CO_2 = 12.0 + 2 \times 16.0 = 44.0 \text{ g/mol}$$

 $\frac{44.0 \text{ g/mol}}{22.4 \text{ L/mol}} = 1.96 \text{ g/L}$

(1.5) 3. You collect a sample of a gas from your propane tank and measure its density to be 1.96 g/L at STP. What is the molecular weight of propane?

$$1.96 \text{ g/L x } 22.4 \text{ L/mol} = 43.9 \text{ g/mol}$$

- 4. When iron rusts, it reacts with oxygen to form iron (III) oxide.
- (2) (a) Write and balance the chemical equation for the rusting process.

$$4 \text{ Fe} + 3 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{O}_3$$

(2) (b) Calculated the mass of iron (III) oxide that would be produced from a nail weighing 21.5 grams if the nail were completely rusted.

(1 pt. correct FW, 1 pt. correct conversion; 0.2 pt if too many sig. fig.)

FW Fe₂O₃ = 2(55.8) + 3(16.0) = 159.6
$$\frac{g}{\text{mol}}$$

21.5 g Fe x
$$\frac{1 \text{ mol Fe}}{55.8 \text{ g Fe}}$$
 x $\frac{2 \text{ mol Fe}_2\text{O}_3}{4 \text{ mol Fe}}$ x $\frac{159.6 \text{ g Fe}_2\text{O}_3}{1 \text{ mol}} = 30.7 \text{ g Fe}_2\text{O}_3$