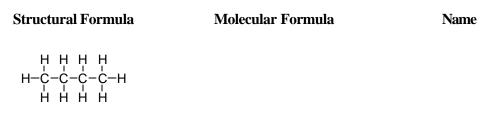
CHM 1045 (12:20 am Lecture)	HOUR TEST 1	Name			
September 21, 2001		(ple	ease print)		
Recitation: Section				Meeting Time	
This exam consists of 4 pages. Make sure you have one of each. Print your name at the top of <u>each page</u> now. A fifth page contains a periodic chart. You may tear it off and use it as a scratch sheet. Show your work on calculations, including unit conversions, and give answers in the				Points	
correct units and appropriate number of significant figures.			2		
In problems involving molecular and formula weights, you may use values rounded to the			3		
nearest 0.1 amu. If anything confuses you or is not clear, raise your hand and ask!			4		
			Total		

- (4) 1. Gold has a density of 19.3 g/cm³. What would be the mass of a gold bar measuring 5.0 cm x 2.0 cm x 15 cm?
- (4) 2. You bought a new automobile which gets a gas mileage of 28 miles/gallon. Your European friend wants to know what this is in kilometers per liter. What do you tell him? (1 mile = 1.609 kilometers; 1 gallon = 3.785 liters)
- (8) 3. Name the following compounds:

(8)

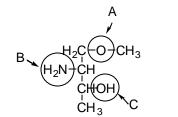
Fe(OH) ₃	K ₂ S
BaCO ₃	(NH ₄) ₂ SO ₃
4. Write the formulas for the following:	
rubidium sulfide	dinitrogen pentoxide
iron (II) bromite	magnesium iodate


(9) 5. Give the number of protons, neutrons, and electrons in the following:

Nuclide	Protons	Neutrons	Electrons
¹¹⁹ Sn			
80 Se ⁻²			
40 Ca ⁺²			
Ca			

CHM 1045 -- HOUR TEST 1

(8) 6. Give the atomic symbol, as in the illustration, including **Z**, **A**, and **q** for atoms or ions containing the following numbers of particle:


(8) 7. Give the molecular formula and name for the following hydrocarbons.

(6)

8.

For the following organic compound, give the **name** of the circled organic functional groups.

A._____ B._____ C.____

(14) 9. Balance the following chemical equations (reduce to the smallest whole number coefficients):

(a) $_La_2O_3 + _H_2O \rightarrow _La(OH)_3$

(b) <u>Al</u> + <u>HCl</u> \rightarrow <u>AlCl</u>₃ + <u>H</u>₂

(c) $Fe(OH)_3 + \underline{H}_2SO_4 \rightarrow \underline{Fe}_2(SO_4)_3 + \underline{H}_2O$

(d) $_CO + _O_2 \rightarrow _CO_2$

Page 2

CHM 1045 -- HOUR TEST 1

(4) 10. Calculate the number of grams in 93.8 moles of SO₃.

(4) 11. Calculate the number of molecules in 33.1 g of NH_3 .

(8) 12. A compound containing only carbon, hydrogen and oxygen was shown by combustion analysis to consist of 40.0% C and 6.7% H. What is its empirical formula?

CHM 1045 -- HOUR TEST 1

Page 4

(15) 12. Balance the following chemical equation:

 $\underline{\qquad} Zr(NO_3)_4 + \underline{\qquad} NaCl \quad ----> \underline{\qquad} ZrCl_4 + \underline{\qquad} NaNO_3$

 $78.5 \text{ g of } Zr(NO_3)_4$ are mixed with 85.5 g of NaCl, and the above reaction proceeds. Answer each of the following questions in the blank provided, **showing your work in the space under the question**

(a) How many moles of Zr(NO₃)₄ is this?

(b) How many moles of NaCl is this?

(c) Which is the limiting reagent?

(d) How many g of ZrCl₄ will be produced?

(e) How many g of the excess reagent will be left?