CHM 1045 (12:20 pm Lecture)	HOUR TEST 2	Name		
October 12, 2001	Recitation:	(please print) Section Meeting Time_		ne
This exam consists of 4 pages. Make sure top of <u>each page</u> now. A fifth page contain	•		0	Points
it for scratch paper. Show your work on ca	alculations, including unit conv	versions, and gi	ve 1	
answers in the correct units and appropriate	e number of significant figures	- -	2	
In problems involving molecular and for	rmula weights, you may use v	values rounded	I 3	
to the nearest 0.1 amu.			4	
If anything confuses you or is not clear, rai	se your hand and ask!			
			Total	

Points

- (18) 1. For the potential reactants in water below:
 - (a) Write the **balanced** potential metathesis equation in the **molecular form** showing the correct formula for the potential metathesis products.
 - (b) Write a balanced **net ionic equation**, (or indicate **no net ionic equation** if there is none.)
 - (c) If there is a net ionic equation, state whether the reaction should occur in the **forward** or **reverse** direction.
 - (d) Be sure to indicate precipitates with (s), gases with (g), and weak electrolytes by writing the molecular formula rather than the ions

Examples:

Ex 1:	NaCl	+	KI	R	NaI	+	KCl	(potential metathesis reaction)
No net ionic reaction								
$\mathbf{E}_{\mathbf{v}}$ 2	A aCl		I INO	、	A aNC	`	LICI	(notantial matatheorie reaction)

Ex 2 AgCl + LiNO₃ \rightarrow AgNO₃ LiCl (potential metathesis reaction) AgCl_s \leftarrow Ag⁺ + Cl (net ionic reaction, occurs in reverse)

A.
$$Pb(NO_3)_2 + NaCl$$

B. BaSO₄ + KCl @

C.
$$(NH_4)_2S + Cu(NO_3)_2$$

(6) 2. Classify as **strong acid**, **weak acid**, **strong base**, **weak base**, or **salt**:

HF	H_2SO_3	H_3PO_4
Ca(OH) ₂	HNO ₃	$HC_2H_3O_2$

(6) 3. **Circle** the following compounds which are **insoluble** in water:

 $KNO_3 \quad Ba(C_2H_3O_2)_2 \quad PbCb_2 \quad Ba_3(PO_4)_2 \quad Na_2CO_3 \quad Fe_2S_3$

- (12) 4. A 3.45 g sample of $Mg(OH)_2$ suspended in water required 38.5 mL of a solution of HCl to completely react with it in a titration experiment.
 - (a) Write the balanced molecular equation for the reaction.
 - (b) Write the net ionic equation for the reaction.
 - (c) Calculate the molarity of the HCl solution. (Show your work).

(9) 5. Give the oxidation number of the indicated element in each of the following compounds or ions:

C in CO ₂	Br in BrO_3^-	Cu in CuCh
\mathbf{P} in HPO ₃ ²⁻	C in $HC_2H_3O_2$	Mn in KMnO ₄
S in SO ₄ ²⁻	C in CNO ⁻	Al in AbO ₃

CHM 1045 -- HOUR TEST 2 12:20 pm

Page 3

(13) 6. Given the following oxidation-reduction reaction:

 $S_2O_4^{2-} + CrO_4^{2-} \rightarrow SO_3^{2-} + Cr^{3+}$ (a) Identify: The reagent being oxidized The reagent being reduced ______ The oxidizing agent ______

(b) Balance the equation **in acidic solution**.

The reducing agent

(6) 7. State **Boyle's Law** in its mathematical form

(8) 8. A tank of gas with a volume of 3.6 L is under a pressure of 75 atmospheres at 30 °C. If the gas were completely released into plastic bag at 0.95 atmospheres pressure and 5 °C, what volume would the gas occupy in the bag?

CHM 1045 -- HOUR TEST 2 12:20 pm Page 4

(8) 9. A tank of gas contains 20.2 g of N_2 and 15.1 g of O_2 . The pressure in the tank is 12.0 atmospheres. What are the partial pressures of the N_2 and the O_2 ?

Name

(14) 10. Oxygen gas can be produced by the decomposition of potassium chlorate in the presence of a catalyst, according to the following reaction:

 $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$

A sample of KClO₃ was decomposed in this fashion, and the oxygen was collected over water by displacing the water from an upended container. The volume of the oxygen collected was 1.56 L at a temperature of 20 °C. The atmospheric pressure was 755 torr, and the vapor pressure of water at 20 °C is 17.5 torr. Calculate the **moles** of KClO₃ and the **grams** of KClO₃ in the sample. (Show your work). **R** = **0.08206 L-atm-mol⁻¹-K⁻¹**.