CHM 1045 Dr. Light's Section December 10, 2002	FINAL EXAM Recitation	Name(Section	please print) Meeting Time
This exam consists of six pages. Make sure you <u>each page</u> now. Pages 7 and 8 contain some the electronegativities, and a periodic table. You may Show your work on calculations, including uni units and appropriate number of significant fig formula weights, you may use values rounded If anything confuses you or is ne	ermochemical data, important con ay tear both off and use them for it conversions, and give answer ures. In problems involving mo to the nearest 0.1 amu.	nstants, a table o scratch paper. s in the correct lecular and	
			Total

Points

(6) 1. Complete and balance the following chemical equations. In cases where the name of the substance is given, give the formula under the name. In cases where a ? is given, fill in the missing compound under the ?.

(a) potassium hydroxide + bromous acid \rightarrow potassium bromite + ?

(b) $C_{12}H_{22}O_{11} + O_2 \rightarrow ? + ?$

(4) 2. Give the atomic symbol, including Z, A, and q in the proper location, for atoms or ions containing the following number of particles:

(a) 15 protons, 16 neutrons,	(b) 47 protons, 61 neutrons,
18 electrons	46 electrons

(5) 3. How many L of a 0.12 M solution of Ba(OH)₂ is required to neutralize 0.31 L of a solution of 0.47 M HCl? Write the equation for the reaction. Show your work.

CHM 1045 – Fall 2002 FINAL EXAM Page 2

Name _____

4. Given the following balanced chemical equation:

 $2 \hspace{0.1cm}Al_{(s)} \hspace{0.1cm} + \hspace{0.1cm} 6 \hspace{0.1cm}HCl_{(aq)} \hspace{0.1cm} ----> \hspace{0.1cm} 2 \hspace{0.1cm}AlCl_{3(aq)} \hspace{0.1cm} + \hspace{0.1cm} 3 \hspace{0.1cm}H_{2(g)}$

(3) (a) How many grams of Al will be required to produce 25.4 g of hydrogen gas?

(b) 2.5 Moles of Al are added to a solution containing 6.5 moles of HCl.

- (2) (1) Which reagent is limiting?
- (2) (2) How many moles of the excess reagent will remain after the reaction?
- (2) (3) How many moles of H_2 will be produced in the reaction?

(5) 5. A compound containing C, H, and O yields the following analysis:
 54.6% Carbon, 9.1% Hydrogen, 36.4% Oxygen. Determine the empirical formula.

CHM 1045 – Fall 2002 FINAL EXAM

Page 3

6. Calculate the ?H for the following reaction in three different ways, using the thermochemical data given at the end of the test:

 $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$

(4) (a) Using bond energy data.

(4) (b) Using heats of formation data.

(4) (c) Using heats of combustion data. (Hint: Write the equations for complete combustion of both reactants and products, and use Hess's Law to combine the ? H for those steps to give the ? H for the above reaction).

(4) 7. How many joules of heat energy will be required to raise the temperature of 25 grams of ice from -24°C to liquid water at 85°C?

CHM 1045 - Fall 2002 FINAL EXAM Page 4 Name

(4) 8. What is the energy of a mole of photons having a wavelength of 450 nm?

(4) 9. What is the frequency of a photon of light emitted by a hydrogen atom in which the electron drops from the fourth Bohr orbit to the first Bohr orbit?

(3) 10. Write the abbreviated electron configuration (using the rare gas core, i.e. $C = {He} 2s^2 2p^2$) for the following:

(4) 11. Give the value of the quantum number l associated with electrons in each of the following orbitals:

		2p	5f	3s	4d
	1=				
(3) 12.	Comparing the eler	nents Br and Cl,	which		
	(a) Has the higher	ionization energ	y?		
	(b) Has the larger	atomic radius?			
	(c) Is most reactive	with metals?			
(3) 13.	Comparing the eler	nents Na and P,	which		
	(a) Has the higher	ionization energ	y?		
	(b) Has the larger a	atomic radius?			
	(c) Forms an oxide	which reacts with	th water to produ	ice a basic soluti	on?

Page 5

(12) 14. For each of the following compounds or ions, draw the best Lewis dot structure. (If more than one resonance structure is "best", draw only one). The central atom is underlined. Give the electron pair geometry, the molecular geometry, and the hybridization about the central atom.

Compound	Lewis Structure	Electron pair Geometry	Molecular Geometry	<u>Hybridization</u>
<u>C</u> H ₂ O				
<u>Xe</u> F ₄				
<u>Cl</u> O ₃ ⁻				

(3) 15. Draw three Lewis Dot resonance structures for $\underline{SO_3}^2$ in which the central sulfur atom has a zero formal charge. Label the formal charges on each oxygen. Must the octet rule must be violated to draw these structures?

CHM 1045 – Fall 2002 FINAL EXAM Page 6 Name _____

(5) 16. What volume of oxygen, measured at 273 K and 1.00 atm pressure, must be used to completely burn 32.0 grams of C_3H_8 ? (Write the balanced equation for the reaction).

(5) 17. A 0.400 L lecture bottle of gas contains a mixture of 78.0 mole % nitrogen, 13.0 mole % oxygen, and 9.0 mole % CO₂ at 25 °C and 12.4 atm pressure. How many moles of each gas are present in the cylinder?

(9) 18. Given the following oxidation-reduction reaction:

(a)

(b) Balance the equation **in basic solution**.

Page 7

The following tables of data may be useful to you.

Physical constants:

$\mathbf{c} = 3.00 \text{ x } 10^8 \text{ ms}^{-1}$?H of fusion of ice = 6.008 kJ/mol ;
$\mathbf{h} = 6.63 \text{ x } 10^{-34} \text{ J-s}$?H of vaporization of water = 40.67 kJ/mol;
$\mathbf{R}_{\mathbf{H}} = 2.18 \text{ x } 10^{-18} \text{ J}$	Specific heat of ice = 2.092 J/g-K
$\mathbf{R} = 0.0821 \text{ L-atm/mol-K}$	Specific heat of water = 4.184 J/g-K ;

Heats of Formation:

Substance	D H _f ^o kJ/mol	Substance	D H _f ° kJ/mol
CO(g)	-110.5	CaO(s)	-635.1
CO ₂ (g)	-393.5	CaCO ₃ (s)	-1207.1
CH ₃ OH(1)	-238.6	Ca(OH) ₂ (s)	-986.1
C ₂ H ₅ OH(l)	-277.7	Mg(g)	147.1
H ₂ O(l)	-285.8	$Mg^{2+}(g)$	2335.1
$H_2O(g)$	-241.8	$Mg^{+}(g)$	885.1
$C_2H_6(g)$	-84.7	MgO(s)	-601.7
$C_2H_4(g)$	52.3	Li(g)	159.3
$C_2H_2(g)$	226.7	Cl(g)	121.7
C ₆ H ₆ (l)	49.0	F(g)	80.0
$C_4H_{10}(g)$	-124.7	LiCl(s)	-408.3
$CH_2O(g)$	-117.0	Li ⁺ (g)	685.7
CH ₃ COOH(l)	-484.1	Cl ⁻ (g)	-227
$C_{6}H_{12}O_{6}(s)$	-1273.3	F(g)	-252

Heats of Combustion

Substance	Substance DH _{combustion} kJ/mol		DH _{combustion} kJ/mol		
C (s)	-393.5	CO (g)	-283.0		
CH ₄ (g)	-890	H ₂ (g)	-285.9		
$C_{3}H_{8}\left(g ight)$	-2220	C ₆ H ₆ (l)	-3267		
CH ₃ OH (1)	-726.5	C ₂ H ₅ OH (l)	-1366.7		
$C_{2}H_{4}\left(g ight)$	-1410.9	$C_{2}H_{2}\left(g ight)$	-1299.6		
$C_{2}H_{6}\left(g ight)$	-1559.7	$C_{6}H_{12}O_{6}(s)$	-2816		

Page 8

Name _____

Average Bond Energies (kJ/mol)

Single	Bonds:							Multip	le Bonds	:			
C-H C-C C-N C-O	413 348 293 358	N-H N-N N-O N-F	391 163 201 272	O-H O-O O-F O-Cl	463 146 190 203	F-F Cl-F Cl-Cl	155 253 242	C=C C≡C C=N C≡N	614 839 615 891	N=N N≡N	418 941	O ₂ S=O S=S	495 523 418
C-F C-Cl C-Br C-I C-S	485 328 276 240 259	N-Cl N-Br H-H H-F	200 243 436 567	O-I S-H S-F S-Cl	234 339 327 253	Br-F Br-Cl Br-Br	237 218 193	C=N C=O C≡O	799 1072			5-5	410
Si-H Si-Si	323 226	H-Cl H-Br H-I	431 366 299	S-Br S-S	218 266	I-Cl I-Br I-I	208 175 151						
Si-C Si-O	301 368												

Some Electronegativities

H 2.1	(2A)	(3A)	(4A)	(5A)	(6A)	(7A)
Li 1.0	Be 1.5	B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0
K 0.8	Ca 1.0	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
	[Transition Metals 1.0	-2.4]				
Rb 0.8					Te 2.1	I 2.5
Cs 0.7					Po 2.0	At 2.2
	[Transition Metals 1.0	-2.4]				

1A									8A
H 1.008 2A					3	A 4A	5A (5A 7A	He 4.003
3 4 Li Be 6.94 9.01					j 10	5 6 B C .81 12.01	Ň	8 9 0 F 5.00 19.00	10 Ne 20.18
11 12 Na Mg 22.99 24.31 3E	4B 5B	6B 7B	8B	1B	2B 26	3 14 Al Si .98 28.09	Р	16 17 S Cl 2.06 35.45	18 Ar 39.95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 23 Ti V 47.88 50.94	$ \begin{bmatrix} 24 & 25 \\ Cr & Mn \\ 52.00 & 54.94 \end{bmatrix} $	26 27 Fe Co 55.85 58.93	28 29 Ni Cu 58.69 63.55	30 3 Zn 0 65.38 69	31 32 Ga Ge .72 72.59		34 35 Se Br 3.96 79.90	36 Kr 83.80
37 38 39 Rb Sr Y 85.47 87.62 88.9		42 43 Mo Tc 95.94 (98) 1	44 45 Ru Rh 101.07 102.91 76 77	46 47 Pd Ag 106.4 107.87	Cd I 112.41114	19 50 n Sn 4.82118.69	51 Sb 121.75 12	52 53 Ге I 7.60 126.90	54 Xe 131.29
55 56 57 Cs Ba La 132.91 137.33 138.	* Hf Ta	W Re	76 77 Os Ir 190.2 192.22	Pt Au	80 8 Hg 1 200.59204	81 82 Fl Pb 4.38 207.2	Bi I	84 85 Po At 09) (210)	86 Rn (222)
87 88 89 Fr Ra Ac (223) 226.03227.	KI DD	$\begin{array}{c ccc} 106 & 107 \\ Sg & Bh \\ (266) & (264) \end{array}$	$\begin{array}{c cccc} 108 & 109 \\ Hs & Mt \\ (269) & (268) \end{array}$	110 111 Uun Uuu (272)	112 1 Uub	13 114 Uuq		16 117 uh	118 Uuo
*Lanthanides 58 Ce 140.		61 62 Pm Sm (145) 150.361	63 64 Eu Gd 151.96 157.25	65 66 Tb Dy 158.93162.50	67 6 Ho E 164.93167	58 69 Fr Tm 7.26168.93	70 Yb 173.04 174	71 _u 4.97	
**Actinides 90 Th 232.	91 92 Pa U 04231.04238.03	93 94 Np Pu 3237.05 (244)	95 96 Am Cm (243) (247)	97 98 Bk Cf (247) (251)	99 10 Es F (254) (25	00 101 m Md 57) (258)	No l	03 (r 62)	