CHM 1045 (11:15 am Lecture) Dr. Light	FINAL EXAM April 26, 2004	Name(please prin	t)							
Sec. 21 5:30-6:20 pm (Popovic)Sec. 24 3:30-4:20 pm (0 Check your recitation section: Sec. 22 6:30-7:20 pm (Popovic)Sec. 25 4:30-5:20 pm (0 Sec. 23 7:30-8:20 pm (Popovic)Sec. 26 5:30-6:20 pm (0										
This exam consists of six pages. Make surthe top of <u>each page</u> now. Pages 7 and 8 c constants, a table of electronegativities, an use them for scratch paper. Show your work on calculations, including correct units and appropriate number of semiclecular and formula weights, you may	t your name at data, important ear both off and answers in the ns involving earest 0.1 amu.	Page Points 1 2 3 4 5 6								
If anything confuses you or is	not clear, raise your hand a	nd ask!	• Fotal							

Points

(4) 1. Give the atomic symbol, including Z, A, and q in the proper location, for atoms or ions containing the following number of particles:

(a) 34 protons, 45 neutrons(b) 26 protons, 30 neutrons36 electrons23 electrons

(6) 2. Complete and balance the equations for the following reactions, giving first the **balanced molecular** equation, then the net ionic equation. (Give the correct formulas for the named reactants and for the products indicated with a ?).

(a) silver (I) nitrate + sodium sulfate ® ? + ?

molecular equation:

net ionic equation:

(b) sulfuric acid + lithium hydroxide ® ? + ?

molecular equation:

net ionic equation:

Page 2

3. You mix 45.0 mL of a 0.293 M solution of Na_3PO_4 with 65.0 mL of a 0.266 M solution of BaCb. Following is the balanced equation for the reaction which occurs:

 $3 \operatorname{BaCh}(aq) + 2 \operatorname{Na_3PO_4}(aq) \rightarrow \operatorname{Ba_3(PO_4)_2}(s) + 6 \operatorname{NaCl}(aq)$

(4) (a): How many **grams** of each reagent are mixed in the reaction?

(2) (b) Which is the limiting reagent? (Show your work in determining).

(2) (c) How many **moles** of $Ba_3(PO_4)_2$ will be formed in the reaction?

(2) (d) How many **moles** of excess reagent will remain?

(5) 4. The heat of combustion of propane (C₃H₈) is -2220 kJ/mol.
(a) Write and balance the equation for the complete combustion of propane.

(b) If enough propane is burned to produce 1.00×10^4 kJ of heat, how many grams of CO₂ would be produced?

(5) 5. A compound containing only carbon, hydrogen, and oxygen was shown by combustion analysis to consist of 57.1% C and 4.76% H. What is its empirical formula?

6. Calculate ΔH for the following reaction in two different ways, using the thermochemical data given at the end of the test:

 $C_2 H_{4\,(g)} \quad \ + \quad H_2 O_{\,(l)} \quad \ \rightarrow \quad C_2 H_5 OH_{(l)}$

(3) (a) Use the bond energy data.

(3) (b) Use the heats of formation data.

(1) (c) Using the ΔH value from part (b), calculate ΔE (q at constant volume) for this reaction at 25 °C.

Page 4

- 7. An unknown metal weighing 44.7 g is heated to a temperature of 87.2 °C and placed in an insulated cup containing 105.6 g of water at a temperature of 20.5 °C. After the metal cools, the final temperature of the metal and the water is 23.4 °C.
- (3) (a) How much heat has the metal lost?
- (3) (b) What is the specific heat of the metal?

(6) 8. Carbon-carbon bonds are prevalent in nearly every organic and biological molecule. The average bond energy of the C-C bond is 348 kJ/mol. Calculate the **frequency** and **wavelength** of the least energetic photon that could break a bond with this energy.

- 9. You purchase a tank of "purified" air containing 79.2 % mole percent nitrogen and 20.8% mole percent oxygen. At 25 °C, the tank gauge registers a pressure of 10.24 atmospheres. The volume of the tank is 6.8 L.
- (3) (a) What is the partial pressure of the oxygen in the tank?
- (3) (b) How many grams of oxygen are contained in the tank?

Page 5

Name	
------	--

(3) 10. Write the abbreviated electron configuration (using the rare gas core, i.e. $C = [He]2s^22p^2$) for the following:

Sb

 Ni^{2+}

S

- (4) 11. For each of the following groups of three elements, circle the one with the highest first ionization energy.
 - (a) Na Mg K (b) F O P
- (4) 12. For each of the following groups of three atoms, circle the one with the largest atomic radius.
 - (a) S O P (b) Ca Rb K
- (4) 13. Identify the quantum number n and l associated with the following atomic orbitals:

	2s	4d	3р	6f
n =				
1=				

(8) 14. For the following compounds formed between bromine and fluorine, draw the Lewis dot structure. Give the electron pair geometry, the molecular geometry, and the hybridization about the central atom.

<u>Compound</u>	Lewis Structure	Electron pair Geometry	<u>Molecular</u> <u>Geometry</u>	<u>Hybridization</u>
BrF ₃				
BrF ₅				

Page 6

- (8) 15. Acetylsalicylic acid (aspirin) is probably the most widely used medicine in the world. It has the Lewis structure on the right.
 - (a) How many **sigma** bonds are there in the molecule? _____
 - (b) How many **pi** bonds are there in the molecule?
 - (c) How many carbon atoms in the molecule have sp² hybridization?
 - (d) How many carbon atoms in the molecule have sp³ hybridization? _____

(8) 16. Fill in the molecular orbital occupancy for the two ions O_2^+ and F_2^+ and determine the bond order for each.

- (6) 17. Below is a phase diagram for water. Identify the point (A, B, C, D, or E) or region (X, Y, or Z) of the diagram that corresponds to:
 - (a) water vapor ______
 (b) liquid water ______
 (c) normal melting point ______
 (d) normal boiling point ______
 (e) triple point ______
 (f) ice ______

Page 7

Name

The following constants, equations, and tables of data may be useful to you.

Physical constants and equations:

 Rydberg constant = 1.097 x 10⁷ m⁻¹

 $1/\lambda = 1.097 x 10^7 m^{-1} (1/n_1^2 - 1/n_2^2)$

 Planck's constant, h = 6.626 x 10⁻³⁴ J-s

 (or kg-m²/s)

 Speed of light, c = 3.00 x 10⁸ m/s = λv

 Energy of 1s orbital in the hydrogen atom = -2.18 x 10⁻¹⁸ J (also = Rydberg constant x hc)

 $\lambda = h/mv$
 $\Delta x \cdot m\Delta v \ge h/4\pi$

 E = hv

 N = 6.022 x 10²³ entities/mol

 R = 0.08206 L-atm/mol-K (or 8.314 J/mol-K)

?H of fusion of ice = 6.008 kJ/mol;
?H of vaporization of water = 40.67 kJ/mol;
Specific heat of ice = 2.092 J/g-K
Specific heat of water = 4.184 J/g-K;

Heats of Formation:

Substance	D H _f ° kJ/mol	Substance	D H _f ^o kJ/mol
CO(g)	-110.5	CaO(s)	-635.1
$CO_2(g)$	-393.5	CaCO ₃ (s)	-1207.1
CH ₃ OH(l)	-238.6	Ca(OH) ₂ (s)	-986.1
C ₂ H ₅ OH(l)	-277.7	Mg(g)	147.1
H ₂ O(l)	-285.8	$Mg^{2+}(g)$	2335.1
$H_2O(g)$	-241.8	$Mg^+(g)$	885.1
$C_2H_6(g)$	-84.7	MgO(s)	-601.7
$C_2H_4(g)$	52.3	Li(g)	159.3
$C_2H_2(g)$	226.7	Cl(g)	121.7
C ₆ H ₆ (l)	49.0	F(g)	80.0
$C_4H_{10}(g)$	-124.7	LiCl(s)	-408.3
$CH_2O(g)$	-117.0	$Li^{+}(g)$	685.7
CH ₃ COOH(1)	-484.1	Cl ⁻ (g)	-227
$C_6H_{12}O_6(s)$	-1273.3	F(g)	-252

Page 8

Name _____

Average Bond Energies (kJ/mol)

Single Bo	nds:							Multip	le Bonds	:			
C-H 4 C-C 3 C-N 2 C-O 3 C-F 4 C-Cl 3 C-Br 2 C-I 2 C-S 2 Si-H 3 Si-Si 2 Si-C 3 Si-C 3 Si-O 3	 413 348 293 358 485 328 276 240 259 323 326 301 368 	N-H N-N N-F N-Cl N-Br H-H H-F H-Cl H-Br H-I	 391 163 201 272 200 243 436 567 431 366 299 	O-H O-O O-F O-Cl O-I S-H S-F S-Cl S-Br S-S	463 146 190 203 234 339 327 253 218 266	F-F Cl-F Cl-Cl Br-F Br-Cl Br-Br I-Cl I-Br I-I	155 253 242 237 218 193 208 175 151	C=C C=C C=N C=N C=0 C=0	614 839 615 891 799 1072	N=N N≡N	418 941	O ₂ S=O S=S	495 523 418

Some Electronegativities

H 2.1	(2A)	(3A)	(4A)	(5A)	(6A)	(7A)
Li 1.0	Be 1.5	B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0
K 0.8	Ca 1.0	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
	[Transition Metals 1.0					
Rb 0.8					Te 2.1	I 2.5
Cs 0.7					Po 2.0	At 2.2

1A																	8A
1 H 1.008	2A											3A	4A	5A	6A	7A	He 4.003
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3B	4B	5B	6B	7B		8B		1B	2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.4	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57 La* 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.03	89 Ac** 227.03	104 Rf (263)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Uun (272)	111 Uuu	112 Uub	113	114 Uuq	115	116 Uuh	117	118 Uuo
*Lanth	anides	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97		
**Acti	nides	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np 237.05	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)		