CHM 1045 (11:15 am Lecture)	HOUR TEST 2 N	ame
Dr. Light	March 1, 2004	(please print)
	Sec. 21 5-20 (-20 (Berrentin)	S 24 2:20 4:20 (Ci4-)

	Sec. 21 5:50-6:20 pm (Popovic) _	Sec. 24 5:50-4:20 pm (Giunta)
Check your recitation section:	Sec. 22 6:30-7:20 pm (Popovic) _	Sec. 25 4:30-5:20 pm (Giunta)
	Sec. 23 7:30-8:20 pm (Popovic) _	Sec. 26 5:30-6:20 pm (Giunta)

This exam consists of 4 pages. Make sure you have one of each. Print your name at the top of each page now. A fifth page contains a periodic chart. You may tear it off and use	Page	Points
it for scratch paper. Show your work on calculations, including unit conversions, and give	1	
answers in the correct units and appropriate number of significant figures. For two points	2	
extra credit, write the name of the SI unit of energy at the top of page 3.	3	
In problems involving molecular and formula weights, you may use values rounded	4	
to the nearest 0.1 amu. If anything confuses you or is not clear, raise your hand and ask!	Total	

Points

(6) 1. In the following list of compounds, **circle** those that are insoluble in water:

 $Pb(NO_3) \qquad K_2S \qquad Ba_3(PO_4)_2 \qquad Mg(OH)_2$

(6) 2. Classify as **strong acid**, **weak acid**, **strong base**, **weak base**, or **salt**:

HF	CH ₃ NH ₂
Ca(OH) ₂	HNO ₃

(8) 3. Complete the following precipitation reactions with **balanced molecular**, **total ionic**, and **net ionic** equations. Be sure to indicate precipitates with (s).

A. $Hg_2(NO_3)_{2(aq)} + KI_{(aq)}$ (R)

Balanced molecular:

Total ionic:

Net ionic:

B. $\operatorname{FeSO}_{4 (aq)} + \operatorname{Ba}(OH)_{2 (aq)} \mathbb{R}$

Balanced molecular:

Total ionic:

Net ionic:

CHM 1045 -- HOUR TEST 2

Page 2

Name

(6) 4. Give the oxidation number of the indicated element in each of the following compounds or ions:

C in CO_2 **Br** in BrO_4^- **P** in HPO_3^{2-}

(10) 5. Given the following oxidation-reduction reaction:

 $S_2O_4^{2-}$ + CrO_4^{2-} \rightarrow SO_3^{2-} + Cr^{3+}

(a) Identify: The **reagent** being oxidized ______ The **reagent** being reduced ______ The oxidizing agent ______ The reducing agent ______

(This refers to the complete ion, not just the element changing oxidation number)

(b) Balance the equation **in acidic solution**. (Show your work, including the beginning and ending oxidation numbers of the elements that undergo a change).

(8) 6. Three 5-L flasks each contain 4 g of gas at 273 K. Flask A contains H₂, flask B contains He, and flask C contains CH₄. Rank the contents of each flask in terms of the following properties by circling the correct relationship:

Pressure:	A>B>C	C>B>A	A=B=C
Density:	A>B>C	C>B>A	A=B=C
Average Molecular Kinetic Energy:	A>B>C	C>B>A	A=B=C
Average Molecular Velocity:	A>B>C	C>B>A	A=B=C

7. Oxygen gas can be produced by the decomposition of potassium chlorate in the presence of a catalyst, according to the following reaction:

 $2 \text{ KClO}_{3 (s)} \rightarrow 2 \text{ KCl}_{(s)} + 3 \text{ O}_{2 (g)}$

(12) (a) A sample of KClO₃ was decomposed in this fashion, and the oxygen was collected over water by displacing the water from an upended container. The volume of the oxygen collected was 1.56 L at a temperature of 20 °C. The atmospheric pressure was 755 torr, and the vapor pressure of water at 20 °C is 17.5 torr. Calculate the **moles** of KClO₃ and the **grams** of KClO₃ in the sample. (Show your work). **R** = **0.08206 L-atm-mol⁻¹-K⁻¹**.

(6) (b) ΔH_f^o for KClO_{3 (s)} = -397.7 kJ/mol; ΔH_f^o for KCl (s) = -436.7 kJ/mol. Calculate ΔH for the decomposition of one mole of KClO₃. Is the reaction **exothermic**, or **endothermic**?

(4) (c) Calculate ΔH for the decomposition of the quantity of KClO₃ specified in part a.

CHM 1045 -- HOUR TEST 2

Page 4

(10) 8. A tank of gas with a volume of 3.6 L is under a pressure of 75 atmospheres at 30 °C. If the gas were completely released into plastic bag at 0.95 atmospheres pressure and 5 °C, what volume would the gas occupy in the bag?

(12) 9. An unknown metal weighing 44.7 g is heated to a temperature of 87.2 °C and placed in an insulated cup containing 105.6 g of water at a temperature of 20.5 °C. After the metal cools, the final temperature of the metal and the water is 23.4 °C. (Specific heat of water = 4.184 J/g-°C)

- (a) How much heat has the metal lost?
- (b) What is the specific heat of the metal?

(12) 10. Heats of reaction can often be calculated using Hess's Law and data from combustion experiments in a calorimeter. An example is the reaction of ethylene $(C_2H_4_{(g)})$ with water to form ethyl alcohol $(C_2H_5OH_{(l)})$:

 $C_2H_{4(g)} + H_2O_{(l)} \rightarrow C_2H_5OH_{(l)}$

Write and balance the combustion equations for $C_2H_{4(g)}$ and $C_2H_5OH_{(l)}$, and use their heats of combustion to calculate ΔH for the above reaction.

 $(\Delta H_{comb} C_2 H_{4(g)} = -1411 \text{ kJ/mol}; \Delta H_{comb} C_2 H_5 OH_{(1)} = -1367 \text{ kJ/mol})$