Chapter 4—Amino Acids

The building blocks of proteins

Slide 2

Amino Acid Structure

- Alpha amino acids-typical structure
 - See Figure 4.1
- Amide bond called peptide bond
 - See Figure 4.2
- Amino acids differ in R-group
 - Structures of the 20 common amino acids
 - See Figure 4.3

(LEARN structures, names, and abbreviations!!)

Slide 3

Amino Acid Stereochemistry

- Natural amino acids are L
 - Configuration based on glyceraldehyde
 - Fischer projection convention:

$$\begin{array}{cccc} O & & O \\ & & & & II \\ C-H & & & C-H \\ HO-C-H & & H-C-OH \\ I & & & CH_3 \\ \end{array}$$

L glyceraldehyde D glyceraldehyde (l-glyceraldehyde) (d-glyceraldehyde)

Amino Acid Stereochemistry, con't

- Cahn, Ingold, Prelog System
 - R, S configuration (Web site explanation)
 - L glyceraldehyde is S
 - D glyceraldehyde is R
 - L alanine is S
 - See Figure Page 99
- All amino acids are S except:
 - Glycine (no chiral carbon)
 - Cysteine (why?)

Slide 5

Amino Acids are Polyprotic

- Neutral Side Chain (See Fig. 4.7)
- Acidic Side Chain (See Fig. 4.8a)
- Basic Side Chain (See Fig. 4.8b)

Slide 6

pK's of Amino Acid Groups

- See Table 1 for actual values
- · Approximate values:
 - Alpha carboxyl ~2
 - Alpha amino ~9.5
 - Side chain carboxyl ~4
 - His side chain ~6
 - Cys side chain ~8.5
 - Lys and Tyr side chain ~ 10
 - Arg side chain ~12

Structure Effect on pK's

- · Carboxyl group
 - Alkyl carboxyl ~4.5
 - Side chain carboxy ~4
 - Alpha carboxyl ~2
 - Peptide terminal carboxy ~3
- Amino group
 - Alkyl amino ~10.5
 - Side chain amino ~10.5
 - Alpha amino ~9.5
 - Peptide terminal amino~8.

Slide 8

Isoionic Point

- When Σ neg.charges = Σ pos. charges
- $pH = (pK_a + pK_b)/2$ where
 - pK_a is for protonation of neutral species
 - pK_b is for deprotonation of neutral species
- Illustration for neutral, acidic and basic amino acids
- Illustration for peptides

Slide 9

Determining Charge on a Peptide

- Note pK's of all functional groups
- Calculate charge when totally protonated
- Determine number of dissociable protons, and charge on each intermediate
- Determine pK's involving neutral species
- pI is average of these pK's
 - pH>pI, peptide is negatively charged
 - pH<pI, peptide is positively charged

Demonstrate with structures how electron withdrawing properties of neighboring functional groups affects the pK's.

Determining Charge on a Peptide, con't.

- Consider the peptide **ACKRDM**
- Estimate its pI
- Estimate its charge at
 - pH = 4.0, pH = 7.0, and pH = 10.0
- How to proceed?
- First, determine the protonatable groups and their pK's

Slide 11

Functional Groups of ACKRDM

- Peptide amino terminal, pK ~ 8
- Cysteine side chain, pK ~ 8.5
- Lysine side chain, pK ~ 10
- Arginine side chain, pK ~ 12
- Aspartate side chain, pK ~ 4
- Peptide carboxy terminal, pK ~ 3

Slide 12

Charge of Fully Protonated ACKRDM

Total charge of fully protonated form = +3

Charge of Fully Unprotonated ACKRDM

Total charge of fully unprotonated form = -3

Slide 14

Dissociation Steps for ACKRDM

$$+3 \xrightarrow{pK_1} +2 \xrightarrow{pK_2} +1 \xrightarrow{pK_3} 0 \xrightarrow{pK_4} -1 \xrightarrow{pK_5} -2 \xrightarrow{pK_6} -3$$

$$-3 \xrightarrow{\text{carboxyltem.}} -3 \xrightarrow{\text{aspartate amino term. cysteine lysine arginine}} -1 \xrightarrow{\text{pI}} -2 \xrightarrow{\text{pK}} -3 \xrightarrow{\text{pK}}$$

Slide 15

ACKRDM Charge at various pH's)

Group	pH = 4.0	pH = 7.0	pH = 10.0
Amino Term.	+1	~+0.9	~+0.03
Cysteine	~0	~-0.03	~-0.97
Lysine	+1	+1	~+0.5
Arginine	+1	+1	~+.99
Aspartate	~-0.5	-1	-1
Carbox. Term.	~-0.9	-1	-1
Total	~+1.6	~+0.9	~-1.5

Other Properties of Amino Acids

- Ultraviolet Spectra (See Figure 4.15)
- Reactions of Carboxyl Group (See Figure 4.9a)
- Reactions of Amino Group (See Figure 4.9b)
- Ninhydrin Reaction (See Figure 4.10)
- Reactions of Cysteine SH (See Figure 4.11a and 4.11b)
- ¹³C Chemical Shifts with pH (See Figure 4.17)

Slide 17

Chromatographic Separation of Amino Acids

- Ion Exchange Chromatography
 - · Cation Exchange Resin
 - Structure (See Figure 4.18a)
 - Operation (See Figure 4.19)
 - Anion Exchange Resin (See Figure 4.18b)
- · Analysis on Ion Exchange
 - See Figure 4.21a
 - See Figure 4.21b
- HPLC Reversed Phase Chromatography of Chemical Derivative
 - See Figure 4.22