BCH Marc	4053 ch 9, 2001	l		HOU	R TEST 2	2	NAME		
(5)	1.	Circle the following monosaccharides which are aldoses .						Page	Points
	glucose	fructose	ribose	glyceralde	ehyde	dihydroxy	acetone	$\frac{1}{2}$	
(5)	2.	Circle the following monosaccharides which are pentoses .							
	fructose	e galactos	se ribos	se	threose	ribul	ose	Total	
(4)	3.	Identify the following pairs as enantiomers , epimers , or anomers . More than one term may apply to a pair.							
			(a)	α-D-g	alactose a	nd β-D-gal	actose		
			(b)	D-thre	ose and D	-erythrose			
			(c)	α-D-n	nannose ar	nd α-L-mar	nose		
	(d) α -D-glucose and α -D mannose					iose			
(4)	4.	Circle each of the following terms which is a correct description of the disaccharide sucrose :							
		β-fructoside	ketal	l	hemiacet	al	β-glucoside		
		furanoside	pyra	noside	reducing	sugar	α -galactosid	e	
(4)	5.	5. Give the name and draw the structure of:							
	(a)) the disaccharide found in milk.				(b) the monosaccharide building block of chitin , the major structural polymer of insects.			

(9) 6. **Circle** the following lipids which are negatively charged at pH 6, and **underline** those that contain a nitrogen atom.

phosphatidyl choline	phosphatidyl serine	phosphatidyl glycerol
cholesterol	sphingomyelin	palmitic acid
phosphatidic acid	phosphatidyl inositol	sialic acid

BCH 4053 -- Hour Test 2

- Name___
- (12) 7. Complete the following table by supplying the missing information on each fatty acid. Be sure to show the double bonds in the correct *cis* or *trans* orientation.

Abbreviation.	Common Name	Systematic Name	Structure	Omega designation
9,12-C _{18:2}				
	Arachidonic Acid			
		9-Octadecenoic Acid		

(4) 8. What is the name for the following lipids?

- (a) The fatty acid amide of sphingosine.
- (b) The glucoside of the compound described in part (a)._____
- (c) A glycerophospholipid with a vinyl ether linkage at C-1 of glycerol.
- (d) Another name for lecithin.

(6)

- 9. Distinguish between integral and peripheral membrane proteins in terms of
 - (a) types of solutions used to extract them from membranes.
 - (b) forces by which they are attached to membranes.
 - (c) membrane location in the fluid mosaic model.

10. Phosphatidyl ethanolamine and lysophosphatidyl ethanolamine form different types of (6)aggregate structures. Describe the different structures (words or diagram), and explain what structural difference between the two lipid molecules accounts for this difference. (10)11. Classify each of the following transport systems according to the terms in the list at the right by putting the appropriate letter or letters in the blank next to the transport system. More than one term may apply. a. primary active transport glucose transporter of erythrocytes b. secondary active transport _____ anion transporter of erythrocytes c. symport d. antiport _____ Na⁺/K⁺ ATPase of plasma membrane e. uniport Ca²⁺ ATPase of sarcoplasmic reticulum

Page 3

Name

f. facilitated diffusion

_____ amino acid uptake driven by a Na⁺ gradient

BCH 4053 -- Hour Test 2

(4) 12. Suggest two experimental features that would distinguish between passive diffusion and facilitated diffusion in the transport of a substance across a cell membrane.

- (8) 13. Draw the structure of the following, showing the bases in their proper tautomeric form.:
 - (a) guanine (b) uracil

(c) a **ribonucleoside** containing adenine (d) a **deoxynucleotide** containing cytosine

BCH 4053 --Hour Test 2

(6) 14. Describe three major structural differences between DNA and RNA.

(5) 15. You have isolated two unidentified bacteria, initially designated strain x and strain y. The DNA of strain x contains 28% adenine, and the DNA of strain y contains 18% adenine. What is the complete DNA composition from each strain? DNA from which strain should have the higher melting temperature?

(2) 16. DNA from a bacterial virus was isolated and found to have the composition 21% A, 28% G, 26% T and 24% C. What would you conclude about the structure of this DNA?

- (6) 17. Which form of DNA (**A**, **B**, or **Z**) (Put answer in blank)
 - _____has the greatest tilt angle of the base pairs?
 - _____has deoxyguanosine in the **syn** conformation?
 - _____is favored by high GC content?
 - ____has a left-handed helix?
 - _____is favored by low humidity?
 - _____is formed by RNA double helices?