CHAPTER 6

Proteins: Secondary, Tertiary, and Quaternary Structure

Slide 2

Levels of Protein Structure

- Primary (sequence)
- Secondary (ordered structure along peptide bond)
- Tertiary (3-dimensional overall)
- Quaternary (subunit relationships)

Slide 3

Forces Contributing to Overall Structure

- Strong (peptide bond, disulfide bond)
- Weak
 - Hydrophobic (40 kJ/mol)
 - Ionic bonds (~20 kJ/mol)
 - Figure 6.1
 - Hydrogen bonds (~12-30 kJ/mol)
 - Dispersion (van der Waals) (0.4-4 kJ/mol)

Effect of Sequence on Structure

- Sufficient information for folding into correct 3-dimensional structure is in the sequence (primary structure) of the protein
 - Experiments of Anfinsen and White on Ribonuclease
- However—the "folding problem" is one of the major unsolved problems of biochemistry and structural biology

Slide 5

Secondary Structure

- Folding probably begins with nucleation sites along the peptide chain assuming certain stable secondary structures.
- Planarity of the peptide bond restricts the number of conformations of the peptide chain. Rotation is only possible about the
 - C(alpha)-N bond (the Φ (phi) angle)
 - C(alpha)-C bond (the Ψ (psi) angle)
 - See Figure 6.2

Slide 6

Steric Constraints on Φ and Ψ Angles

- Examine the effects of rotation about the Φ and Ψ angles using Kinemage
 - Download Kinemage
 - Download Peptide file
- Note that some angles are precluded by orbital overlap:
 - Figure 6.3

Ramachandran Map

- Plot of Φ versus Ψ angle for a peptide bond is called a Ramachandran Map
- Ordered secondary structures have repeats of the Φ and Ψ angles along the chain.
 - See Figure 6.4

Slide 8

Some Common Secondary Structures

- Alpha Helix (Figure 6.6)
 - Residues per turn: 3.6
 - 13 atoms in a turn (3.6 ₁₃ helix)
 - Rise per residue: 1.5 Angstroms
 - Rise per turn (pitch): $3.6 \times 1.5 \text{ A} = 5.4 \text{ A}$
 - $\Phi = -60$ degrees; $\Psi = -45$ degrees
- · Discuss polyglutamate and polylysine
- Two proteins with substantial alpha helix structure (Figure 6.7)
- Other helix structures (3₁₀ and 4.4₁₆helices)

Slide 9

Common Secondary Structures, con't.

- Beta Sheet (or "pleated sheet")
 - See Figure 6.10
- Can be Parallel or Antiparallel
 - See Figure 6.11
- Parallel sheets usually large structures
 - Hydrophobic side chains on both sides
- · Antiparallel sheets often smaller
 - Hydrophobic side chains on one side

Common Secondary Structures, con't.

- Beta-Turn
 - See Figure 6.12
- Beta-Bulge
 - See Figure 6.13Tertiary Structure
- Secondary structures form first, then pack together in tight structures called motifs
 - Beta-alpha-beta, beta hairpin, alpha-alpha,
 - Greek key, beta barrel, alpha/beta barrel
 - (your text doesn't use these terms)
- Motifs might be considered "supersecondary structure. They associate into domains (discrete, independently folding globular units)

Slide 11

Fibrous Proteins

- Organized parallel to an axis
- · Mechanically strong
- Usually insoluble
- Structural roles in nature

Slide 12

Alpha-Keratin

- · Hair, fingernails, claws, horns, beaks
- Rods of 311-314 residues with non-helical N- and C- termini
- Non-polar residues every fourth position form a "stripe" twisting around helix.
- Coiling of two helices stabilized by the "stripe" interactions
- Overall filament is a coil of coils of coils
 - See Figure 6.14

Beta-Keratin

- Silk fibroin, bird feathers
- Antiparallel beta sheets, alternating glycine (one side of sheet) and glycine or serine (other side of sheet)
 - See Fig 6.15
- Sheets stack with like surfaces interacting
- Fibroin also has regions of disorder surrounding "microcrystalline" regions
 - See Page 175 "Charlotte's Web"

Slide 14

Collagen

- Connective tissue (tendons, cartilage, bones, teeth, skin, blood vessels)
- Tropocollagen is basic unit
 - Three intertwined chains, ~1000 residues each
 - See Fig 6.18
 - MW~285,000
 - 300 nm long, 1.4 nm diameter
 - Unique amino acid composition

Slide 15

Collagen, con't

- Sequence is (gly-X-Y)_n, where X is usually proline, and Y is usually hydroxyproline
- Find both 3- and 4- hydroxyproline as well as 5- hydroxylysine
 - See Figure 6.16
- Hydroxylation is a posttranslational modification
 - See Figure 6.17
- Crosslinking occurs between chains
 - See Figure 6.21 and 6.22

Collagen, con't.

- Some collagen related diseases
 - Lathyrism (seeds of sweet pea contain beta amino propionitrile, inhibitor of lysyl oxidase
 - Scurvy (vitamin C—ascorbic acid—is required as a cofactor in prolyl hydroxylase)
 - Marfan's syndrome, Ehlers-Danlos syndrome are rare genetic disorders

Slide 17

Globular Proteins

- · Polar residues out, non-polar residues in
 - Helix orientation depends on environment
 - (See Figure 6.24)
- Residue packing close—ratio of amino acid van der Waals volume to protein volume about 0.72 to 0.77
- Empty space primarily small cavities
- Majority of peptide chain in alpha helix or beta sheet structure, but some ordered, non-repetitive structure

Slide 18

Globular Proteins, con't.

- Some disordered segments may not show in x -ray structures
- Possible fluctuations of atoms, residues, and chains suggest proteins should be viewed as dynamic structures
- "Layered" structures –backbones joined by hydrophobic cores (See Figure 6.28)
- Coiled-Coil Motifs (Deeper Look, page 188)

Classes of Globular Proteins

- One type of classification (Jane Richardson)
 - Antiparallel alpha helix (includes globins)
 - (Figure 6.29)
 - Parallel or mixed beta sheet
 - Figures 6.30 and 6.31
 - · Antiparallel beta sheet
 - Figure 6.32, 6.33 and 6.34
 - Metal and disulfide-rich
 - Figure 6.35

Slide 20

Thermodynamics of Folding

- Consider separately enthalpy and entropy terms for peptide chain and for solvent
- Largest contribution from entropy of interaction of non-polar residues with the solvent (See Box, page 192)

Slide 21

Protein Folding

- · Levinthal's paradox
 - 100 amino acid protein, 2 conformations/AA
 - $2^{100} = 1.27 \times 10^{30}$ possible conformational isomers
 - At 10^{-13} sec for each, time to search all conformations is 4×10^9 years
- Predictive algorithms, based on propensities of amino acids to be found in certain structures

Protein Folding, con't.

- Role of molecular chaperones
 - Originally identified as "Heat Shock" proteins
- Model for steps in folding
 - See Figure 6.36
- Some diseases related to improper folding
 - (See essay on course links page)

Slide 23

Mosaic Proteins

- Many proteins share common **modules** or **domains**, even if function is quite different
- Suggests evolution occurred by shuffling domains around
 - See Figure 6.38

Slide 24

Quaternary Structure

- Typical dissociation for two subunits is 10^{-8} to 10^{-16} M—energies of 50-100 kJ/mol
- Entropy loss due to association is unfavorable
- Entropy gain due to burying hydrophobic groups is favorable
- **Symmetry** of subunit interactions is an important structural feature
 - (See Figure 6.44)

Advantages of Quaternary Association

- Stability (reduction in surface/volume ratio)
- Genetic economy and efficiency—in relation to size of overall protein
- Bringing together catalytic sites
- Cooperativity between binding of ligands provides regulatory mechanisms