

BCH 4053—Summer 2001—Chapter 3 Lecture Notes

Both Work and Energy are products of intensive and extensive factors: force x distance (mechanical work) pressure x volume change (work of expansion)

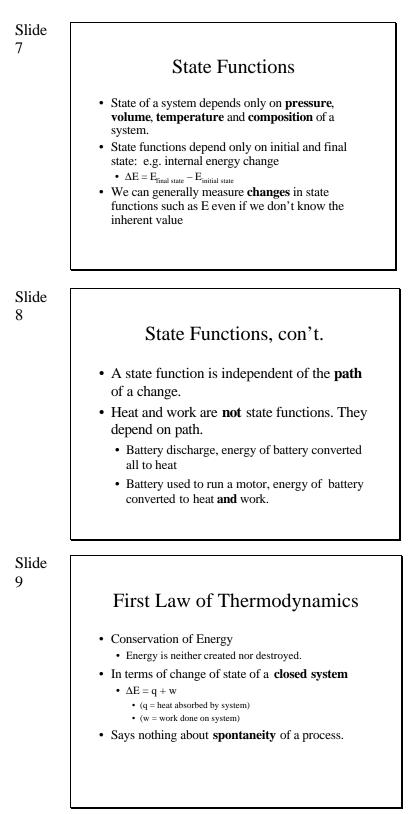
voltage x current (electrical work) etc.

One of the triumphs of the energy concept was the recognition that there is a relationship between heat and work.

Experiments of Joule showed mechanical work (turning a paddle wheel) could heat water just as an electrical heater could, showing the connection between heat and work. An earlier idea viewed heat as a **caloric**, some substance that flowed from one body to another. The **Calorie** (with a capital C), a familiar term in measuring energy content of food substances, is actually one **kilocalorie**.

Slide 4 Energy and Work, con't. • Internal Energy (E or U) • An inherent property of matter · Independent of any microscopic interpretation of matter. but • Interpreted in terms of *kinetic* and *potential* energy of atoms and electrons. Slide 5 Thermodynamics Studies Energy Change ΔE (or ΔU) • System and Surroundings • Isolated Systems (See Figure 3.1) · No exchange between system and surroundings • Closed Systems (See Figure 3.1) • Heat exchange and work exchange between system and surroundings (note book error) • Open Systems (See Figure 3.1) • Matter, as well as heat and work, can exchange between system and surroundings. Slide

The system is any portion of the universe you choose to study. It can be the earth, an individual organism, an individual cell, a test tube of reagents, or simply that part of a solution undergoing a chemical reaction.

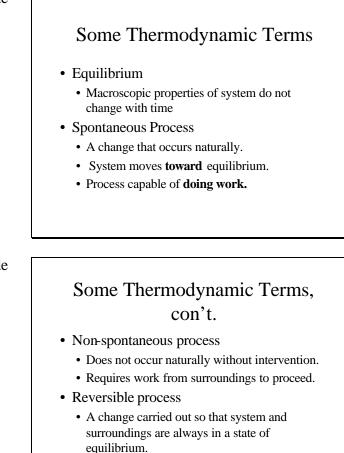

The surroundings is everything else in the universe.

6

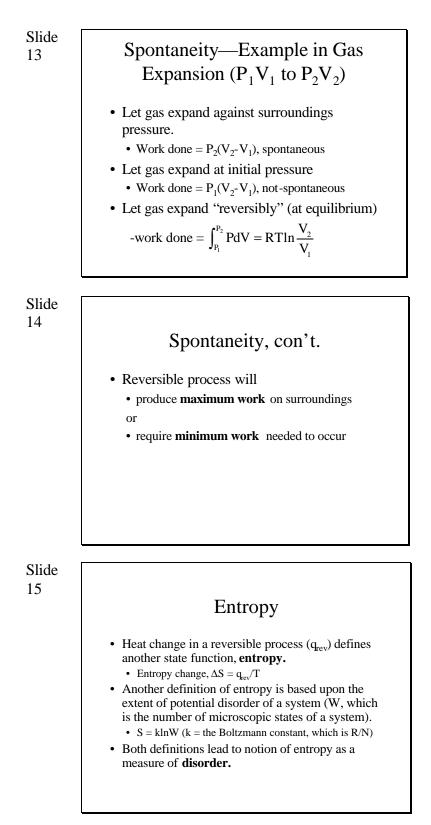
Equilibrium versus Nonequilibrium Thermodynamics

- Equilibrium Thermodynamics deal with closed systems.
- Biological problems deal with open systems.
- While the field of **non-equilibrium** thermodynamics should apply to open systems, data from equilibrium thermodynamics can be useful.

Equilibrium thermodynamics represent idealized conditionswhere any change is carried on with the system and surroundings always in the state of equilibrium with one another. One can calculate maximum or minimum values for thermodynamic quantity changes.



The **distance** between two locations, such as Tallahassee and Jacksonville, is equivalent to a state function. The **travel distance** in traveling from Tallahassee to Jacksonville would depend on the route taken, and would not be a state function.


Sign conventions: q and w are **positive** when energy is added to the system, and **negative** if energy is transferred from the system to surroundings. You might find an alternative statement of the first law in older textbooks which says $\Delta E =$ q-w. In this case, work is defined as positive for work done **by** the system **on** the surroundings. There the analogy is to a steam engine, in which both q and w would be positive.

Slide 10 Enthalpy In a constant volume change, no other work done, ΔE = q, which is q_v. In a constant pressure change, some work of expansion or contraction will be done. ΔE = q_p-PΔV, or q_p = ΔE + P ΔV ΔH, the enthalpy change is defined as q_p ΔH (q_p) and ΔE (q_v) can be measured in a calorimeter, and are both state functions

Slide 11

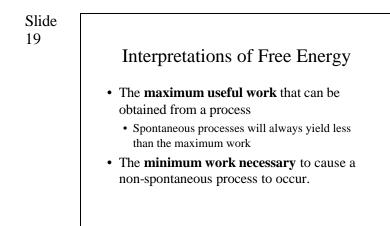
Actually, enthalpy, H is defined as H=E+PV, which reduces to this relationship when P is constant. One would measure q_v in a **constant volume** calorimeter, and q_p in a **constant pressure** calorimeter. Since the changes in biological systems we are interested in generally occur at constant pressure, the enthalpy change is a more appropriate measure of energy change. Think of it as the energy change not devoted to pressure-volume work when a gas is produced or consumed in a process.

Illustrated by drawing graphs on board. Sorry that I haven't yet been able to deve lop these graphs in a computer format.

Slide 16 Second Law of Thermodynamics • The second law speaks to the spontaneity of a process.

- Total entropy increases in a spontaneous process.
- Must include entropy change of surroundings as well as system.

Slide 17


Third Law of Thermodynamics

- Entropy of a crystalline, perfectly ordered substance is 0 at T = O K.
- One can calculate the entropy of a substance by calculating the heat energy necessary to heat the substance to the appropriate temperature.
- Therefore one can define an **absolute** entropy value, even though absolute energy and enthalpy values cannot be defined.

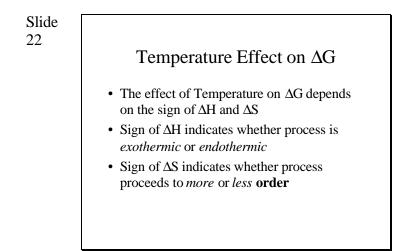
Slide 18

Free Energy

- Gibbs Free Energy, G is defined as G = E + PV - TS
- For Constant T and P changes: $\Delta G = \Delta E + P \Delta V - T \Delta S$
- Part of the internal energy change is required for expansion work (P Δ V), part is required for the thermal disorder of increasing entropy. The rest is available to do **useful work.**

One would only get the maximum work from a spontaneous process, or require the minimum work of a non-spontaneous process, if the change were carried out **reversibly**, that is slowly with all intermediate steps at equilibrium. By "useful work" is meant work other than the pressure volume work inherent in a volume change, such as the production of a gas in a chemical reaction.

Slide 20


Interpretations of Free Energy, con't.

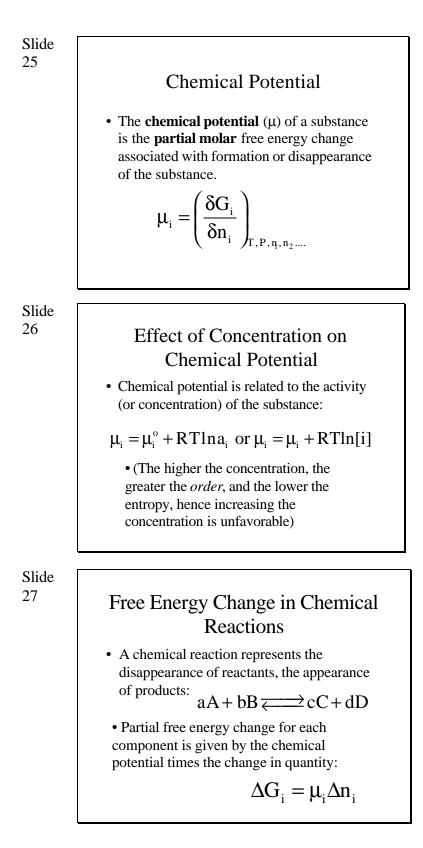
- As a criterion of equilibrium related only to measurements of the system.
- $\Delta G < 0$, spontaneous process
 - (capable of doing work, where ∆G is maximum work available)
- $\Delta G > 0$, not a spontaneous process
 - (work required to make change occur; ΔG is the **minimum** work necessary)
- $\Delta G = O$, system at equilibrium

Slide 21

Free Energy and Entropy

- At constant Temperature and Pressure • $\Delta G = \Delta H - T \Delta S$
- The enthalpy change is related to making and breaking chemical bonds
- The entropy change is related to orderdisorder transitions
- Free energy is that part of enthalpy not related to the order-disorder transitions

Slide


23

ΔH	ΔS	Spontaneity
-	+	Spontaneous at all T
+	-	Non- spontaneous at all T
+	+	Spontaneous at high T
_	-	Spontaneous at low T

Slide 24

Free Energy and Entropy (ice to water as an example)

- For the transition ice \rightarrow water
 - At T = 0°C, equilibrium, $\Delta G = O$, $\Delta H=T \Delta S$
 - At T > 0°C, ΔH<T ΔS, so ΔG < 0,
 melting is spontaneous
 - At T < 0°C, Δ H>T Δ S, so Δ G > 0,
 - melting is not spontaneous

The chemical potential μ , or the **partial molar free energy change**, represents the change in free energy of the system as component i is added or removed from the system while all other conditions are held constant.

In other words, the higher the concentration of i, the greater the free energy change in adding or subtracting i from the system. Slide 28

Reaction Isotherm

• For the overall chemical reaction, we can derive the relationship

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \frac{[\mathbf{C}^{\circ}[\mathbf{D}]^{d}}{[\mathbf{A}]^{\circ}[\mathbf{B}]^{b}}$$

 $(\operatorname{call} \frac{[C][D]^d}{[A]^{\mathfrak{l}}[B]^{\mathfrak{b}}} = Q$, the mass action ratio)

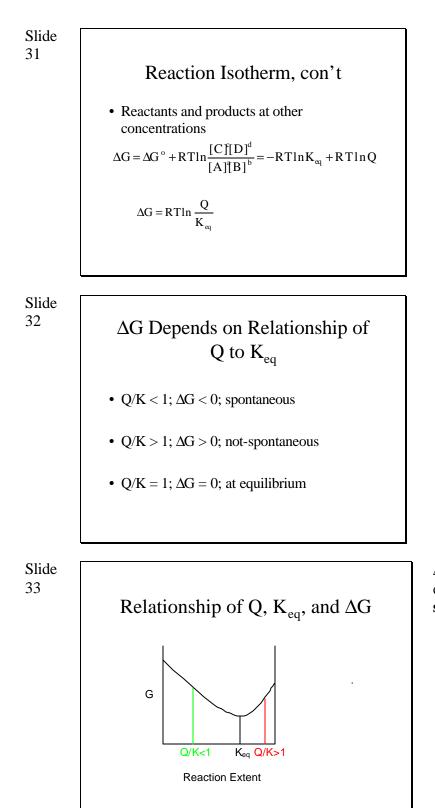
(ΔG° ' is used when standard state of $H^+ = 10^{-7}$)

Slide 29

Reaction Isotherm, con't

- Reactants and products at equilibrium
- ΔG = 0 0 = ΔG° + RTlnQ ΔG° = -RTlnQ, where Q becomes K_{eq}
 (when reactants are converted to products with everything at equilibrium

Slide 30


Reaction Isotherm, con't

- Reactants and products at standard states
- Q = 1

concentrations)

 $\Delta G = \Delta G^{\circ} + RTln[1] = \Delta G^{\circ} + 0$

• ΔG° is called the **standard free** energy change (when reactants are converted to products with everything at standard states) The reaction isotherm can be derived from the definition of the chemical potential. We will not go into that derivation here. This equation shows how changing concentrations of reactants and products will effect the free energy change of the reaction.

 ΔG is also a **partial molar** free energy change, representing the **slope** of the curve at any position **Q**.

Slide 34

54

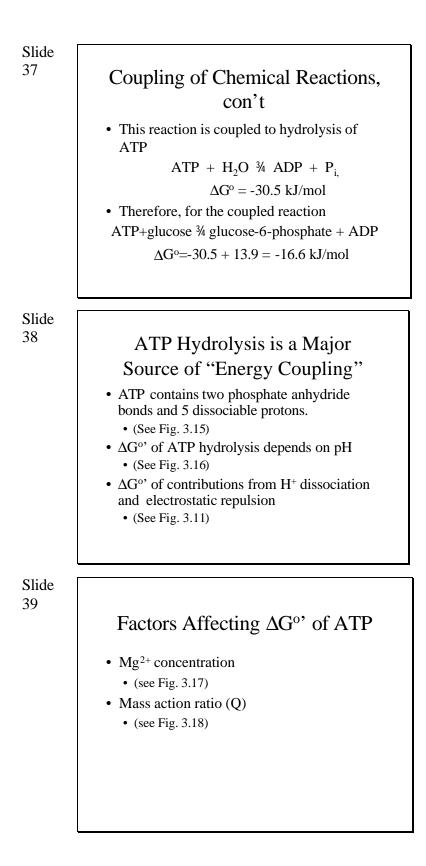
RTlnQ is a Correction Factor to ΔG^{o}

- Q = 0.01, RT lnQ = -11.4 kJ/mol
- Q = 0.1, RT lnQ = -5.74 kJ/mol
- Q = 1, $RT \ln Q = 0 \text{ kJ/mol}$
- Q = 10, $RT \ln Q = +5.74 \text{ kJ/mol}$
- Q = 100, RT lnQ = +11.4 kJ/mol

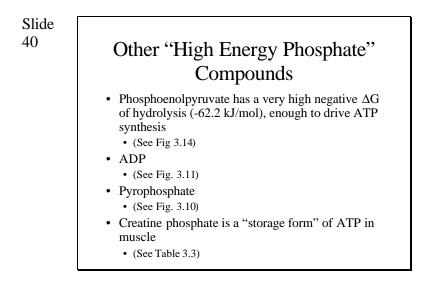
Slide

35

Metabolic Reactions at Steady State


- Calculate ΔG from steady state concentrations
 It must be negative if reaction is proceeding
 - (Q/K < 1)
 - If Q/K > 0.05, steady state is **near equilibrium**
 - If Q/K < 0.05, steady state is **displaced from** equilibrium
- Regulatory steps are usually displaced from equilibrium

Slide 36


Coupling of Chemical Reactions

- For a reaction to proceed, ΔG must be negative.
- A reaction with a positive ∆G can be **coupled** to a reaction with a negative ∆G in order for the overall reaction to occur
- For example, consider

glucose + P_i ¾ glucose-6-phosphate + H_2O $\Delta G^o = + 13.9 \text{ kJ/mol}$ (see Table3.3) Remember, R is the gas constant given in appropriate units, i.e. 8.314 J/mol-K. Assume T = 25° C, or 298 K.

Chapter 3, page 13

