BCH 4053 Summer 2001 Chapter 16 Lecture Notes

Slide 1

Chapter 16

Mechanisms of Enzyme Action

Slide 2

Enormous Rate Acceleration

- Rate accelerations by enzymes over uncatalyzed reactions can be very large, as much as 10¹⁶. (See Table 16.1 for examples)
- A goal of studying enzyme mechanisms is to understand the factors contributing to this acceleration.

Slide 3

Stabilization of Transition State

- Enzyme binds transition state better than it binds substrate
- Energy of EX‡ lowered more than energy of ES. (See Figure 16.1)
- Some factors "destabilize" the ES complex, bringing it closer in energy to EX[‡].
 - (See Figures 16.2 and 16.3)

Slide 4

Some Important Catalytic Mechanisms

- Destabilizing ES complex
 - 1. Entropy loss in ES formation (Fig. 16.4)
 - 2. Strain, desolvation, electrostatic effects (Figures 16.5 and 16.6)
- Stabilizing EX[‡]
 - 3. Covalent catalysis (Fig. 16.9)
 - 4. General acid or base catalysis (Fig. 16.11)
 - 5. Metal ion catalysis (Fig. 16.13)
 - 6. Proximity and Orientation (Figures 16.14 and 16.15) (same concept as in item 1 above)

Slide 5

Transition State Analogs

- The affinity of the enzyme for the transition state may be 10⁻¹⁵ M!
- Analogs of the transition state are very good inhibitors.
 - Proline racemase reaction (Fig. 16.7)
 - Aldolase and adenosine deaminase (Fig. 16.8)

Slide 6

Some Example Mechanisms

- Serine proteases
- · Aspartic proteases
- Lysozyme

Slide 7

Serine Proteases

- A mixture of covalent and general acid-base catalysis .
- Catalytic Triad (Figures 16.18 and 16.17)
 - Asp-102 functions only to orient His-57
 - His-57 acts as a general acid and base
 - Ser-195 forms a covalent bond with peptide to be cleaved

Slide 8

Serine Proteases, con't.

- Stabilization of transition state.
 - Covalent bond formation turns a trigonal C into a tetrahedral C
 - The tetrahedral oxyanion intermediate is stabilized by N-Hs of Gly-193 and Ser-195.
 - (Figure page 519)
- Detailed mechanism (Figure 16.24)
- Burst kinetics (Figures 16.21 and 16.22)

Slide 9

Serine Proteases, con't.

- Diisopropylfluorophosphate is a general irreversible inhibitor.
 - Binds to the serine residue (Figure 16.23)
- Serine proteases very similar in amino acid sequence. (Figure 16.16)
- Specificity at substrate binding pocket.
 - (Figure 16.19)

Slide 10

The Aspartic Proteases

Pepsin, chymosin, cathepsin D, renin and HIV-1 protease

- All involve two Asp residues at the active site
- Two Asps work together as general acid-base catalysts, one has a relatively low pK_a, the other has a relatively high pK_a
 - Deprotonated Asp acts as general base, accepting a proton from HOH, forming OH in the transition state
 - Protonated Asp (general acid) donates a proton, facilitating formation of tetrahedral intermediate
 - (Mechanism, Fig. 16.27; pH profile, Fig. Page 525)

Slide 11

Lysozyme

- The first enzyme whose structure was solved by X-ray crystallography (by David Phillips in 1965)
- Lysozyme hydrolyzes polysaccharide chains and ruptures certain bacterial cells by breaking down the cell wall.
 - Hydrolyzes at glycosidic bond of N-acetylmuramic acid residue. (See Figure 16.31)

Slide 12

Lysozyme Substrate Analog Studies

- Natural substrates are not stable in the active site for structural studies
- But analogs can be used like (NAG)₃
 - Figure 16.33
- Fitting a NAG into the D site requires a distortion of the sugar.
 - (Figures 16.34 and 16.35)
- This argues for stabilization of a transition state via destabilization (distortion and strain) of the substrate.

The Lysozyme Mechanism

- Studies with ¹⁸O-enriched water show that the C₁-O bond is cleaved on the substrate between the D and E sites.
- This incorporates ^{18}O into C_1
 - Figure 16.36
- Glu³⁵ acts as a general acid
 - It is in a hydrophobic environment, causing it to have a much higher pK and to remain protonated.
- Asp⁵² stabilizes a carbonium ion intermediate
 - Figure 16.37