(6)	1.	The free energy change of a chemical reaction varies with the	Page	Points
(0)	1.	concentration of reactants and products. The relationship is given by the reaction isotherm:	1 2	
		$\Delta G = \Delta G^{o} + RTlnQ'$	3 4	
		$\Delta O = \Delta O + RTIIIQ$	7	
		(a) What is the significance of the prime (') in ΔG^{o} ' and Q'?	Total	
		(b) What is the relationship between Q' and K' _{eq} for a spontaneous reacti	on?	

(10) 2. Reactions near equilibrium have ΔG values low, near zero, while reactions that are irreversible or far from equilibrium have large negative ΔG values. In the list of enzymes

of glycolysis and the TCA cycle listed below, but a **check** by the enzymes that operate

near equilibrium.

hexose phosphate isomerase	citrate synthase
triose phosphate dehydrogenase	isocitrate dehydrogenase
succinate dehydrogenase	malate dehydrogenase
phosphoglycero mutase	alpha keto glutarate dehydrogenase
3-phosphoglycerate kinase	phosphofructokinase

(8) 3. Starting with [1-¹⁴C]-glucose, predict which carbon(s) would be labeled in the following intermediates after glycolysis and during **the first turn** of the TCA cycle. (Draw the structure of the intermediate and circle the labeled carbon atom).

- (a) pyruvate
- (b) isocitrate
- (c) alpha-ketoglutarate
- (c) malate

(14) 4. Below are the **partial** structures of seven coenzymes you have studied. Below each structure give the **name** of the coenzyme and draw an alternative form of the coenzyme to which it is converted during the course of a reaction.

$$H_3$$
C N_1 N_2 N_3 C N_4 N_4 N_4 N_4 N_5 N_4 N_5 N_5 N_6 $N_$

(5) 5. Your textbook gives the reaction catalyzed by succinate dehydrogenase as:

Your instructor prefers to write the reaction as:

Explain why.

6. In the presence of cyanide and excess cytochrome c, mitochondria can carry out the following reaction (where the NADH is generated from oxidation of substrates via the TCA cycle):

$$NADH + 2 cyt c(ox) \rightarrow NAD + 2 cyt c(red)$$

(6) Calculate ΔG^{o} for this reaction. (E'o for NAD/NADH is -0.32 volts and for cyt c(ox)/cyt c(red) is +0.25 volts; $\mathbf{F} = 96.5 \text{ kJ mol}^{-1} \text{ volt}^{-1}$)

(6) Identify all the intermediate electron carriers involved in this reaction, indicating which are organized in multiprotein complexes.

(4) (c) If these mitochondria are tightly coupled to ATP synthesis, what molar ratio of ATP made to NADH oxidized would you expect? Explain your answer

- (2) Why is it necessary to add cyanide to observe this reaction?
- (6) 7. **Oligomycin** would block the reduction of cytochrome c described in question 2 if the mitochondria are tightly coupled to ATP synthesis, but **dinitrophenol** would relieve this inhibition allowing cytochrome c reduction to resume. Explain how these two inhibitors would be interacting with the system to show these effects.

BCH	4054	Hour	Test	1
------------	------	------	-------------	---

(15)

an Fe/S protein

Page 4	age 4
--------	-------

(18) 8. Following is an alphabetical list of the intermediate electron carriers found in the mitochondrial electron transport chain. Identify the carriers that fit each description on the right by placing the letter of the carrier(s) in the blank next to the description. **A carrier may be used more than once.**

Electron Carrier		Descript	ion	
(a) Coenzyme Q	A component of Com	plex I		
(b) Cu_A(c) Cu_B(d) cytochrome a	A component of Com	plex II		
(e) cytochrome a ₃	A component of Com	plex III		
(f) cytochrome b_H(g) cytochrome b_L(h) cytochrome c	A component of Com	plex IV		
(i) cytochrome c₁(j) FAD	Carries electrons from	Complex II to	Complex III	
(k) Fe/S center (l) FMN	Carries electrons from	Complex III t	o Complex IV	
、 /	Forms a binuclear center for oxygen reduction			
	Accepts electrons dire	ctly from succ	inate	
	Accepts electrons dire	ctly from NA	DH	
a component in th	e list at the right with ea Only one component	ch statement b	on of plant photosynthesis. Match below by placing the appropriate per blank. (P700 is photosystem	
reduced directly	by P680*	a.	Z, a tyrosine residue	
reduced directly	by P700*	b.	phycocyanin	
oxidized directly	by P680 ⁺	c.	plastocyanin	
oxidized directly	by P700 ⁺	d.	Ao, a chlorophyll molecule	
an accessory pig	ment	e.	pheophytin	
chlorophyll a wit	hout Mg ²⁺	f.	cytochrome a ₃	
reduced by cytoo	chrome b/f complex	g.	ferredoxin	
removes electron	s from the Mn cluster			
a Cu containing	protein			